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Abstract

The occurrence of the air bubble and brine channel phenomenon is observed
in Arctic sea ice. Air bubbles in the ice scatter microwaves and therefore
influence the ice emissivity, which results in an influence on the microwave ra-
diometer and radar satellite signals in the range from 1 GHz to 300 GHz over
sea ice. In order to investigate these effects, a Convolutional Neural Network
(CNN) model is trained using TensorFlow (a group of open source libraries
for Dataflow programming) to independently detect the position of air bubbles
and brine channels in the image of ice cores. Then OpenCV libraries (a number
of open source libraries for computer vision programming) and Matlab image
processing tools are simultaneously used to derive the area and circularity of
the air bubbles. The frequency of air bubbles is plotted using Python libraries.
Jupyter Notebook and PyCharm IDE are used to run the Python scripts.

The trained model is analyzed on 8 different ice cores and in total 50 images.
The detection results show that the frequency of air bubble occurrence, their
area and the circularity of these are independent of the depth of the ice core
within the Arctic Sea area. The number of air bubbles in different images of a
single core does not vary significantly with respect to the depth. It is observed
that the occurrence of air bubbles having the area above 0.5 mm2 decreases
with the increase of core depth, which also means that the occurrence of smaller
air bubbles increases with depth. The performance of the model developed in
this process is tested for air bubble detection on 5 different images of a single
core and measured in terms of Precision Rate [18]. An average of 86.47% of
Precision Rate is obtained from this evaluation.
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1. Introduction

1. Introduction

1.1. Background

In the era of Computer Vision and Machine Learning technology, object de-
tection has become a demanding and challenging task throughout the world.
Right now, object detection using machine learning algorithms like a classifier,
Convolutional Neural Network (CNN), Deep Learning Neural Network (DNN),
etc. are frequently being used in many applications like robotics, image pro-
cessing, image segmentation, image retrieval, and video surveillance.

There are a good number of algorithms already developed for local feature key
points detection. All off the algorithms are different from each other based on
their methodologies. CNN model is practically developed based on the visual
system structure. At first, in 1962, Hubel and Wiesel [16] in their research
work on the visual cortex of cat and monkey, showed that cortexes contain
cells or neurons that are sensitive to small space of the visual field. The sub-
region or small space of the visual field, which creates stimuli effect on the
cortex neuron, is known as the receptive field [24]. All neighbouring neurons
also provide overlapping but either of similar or of different sized receptive field
and thereby all receptive regions systematically develop a complete map that
helps to identify the objects.

Inspired by the work of Hubel and Wiesel, in 1980, Kunihiko Fukushima [21]
introduced a multilayered neural network model called Neocognitron which
consists of convolutional layers and downsampling layers. The convolutional
layer contains neuron or cell which is often called filter, which is nothing else
but only a weight vector consist of a set of adaptive weights. The receptive field
of each neuron of the convolutional layer covers an area of the previous con-
volutional layer and followed by the units or cells of the downsampling layer
whose receptive field covers areas of the previous convolutional layer. This
downsampling layer helps to classify the object correctly. Neocognitron was
the first proposed artificial neural network model which was simulated on com-
puter [16] and applied for handwritten character recognition [9].
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1.2. Objective and Motivation

Later, after a successful contribution to the research field based on Neocogni-
tron, the CNN model is further developed. Nowadays, CNN or DNN model is
frequently used to traffic sign detection [30], pet animal detection [17], vehicle
detection [20] and other pattern detection and so on.

1.2. Objective and Motivation

Several studies over the thin sections of the top 300 mm layer of first-year
and multi-year ice are conducted to understand the statistics on air bubble
dimension and geometry. Study shows that air bubbles in first-year ice (FYI),
especially near the surface, are arbitrarily distributed and connected with each
other randomly. Satellite sensors operating in the microwave range are the pri-
mary tool to monitor the global sea ice cover since the 1970s. The microwave
radiometer signal and radar satellite signal over sea ice get influenced due to
the alternation of air bubble inclusion range in microwave scale (from 1 GHz
to 300 GHz) in ice emissivity and scattering [34].

In order to investigate these effects, simulations of the microwave emission of
Arctic sea ice is needed, which requires detailed information about the air bub-
ble's size, circularity, and distribution. Air bubble inclusions can be observed
in figure 3.4.

The main goal of this thesis is to develop a model using OpenCV libraries,
Matlab and Python programming language which independently can detect
and localize air-bubbles and brine channels from a given input image. Fur-
thermore, the model analyzes statistical information from air-bubble and brine
channels. Statistical information includes position, area, circularity, the total
number of bubbles or channels, size in millimeter, etc. The statistical informa-
tion is further used to calculate the distribution of air bubbles with respect to
the depth of ice cores and plot Probability Density Function (PDF).

Tensorflow (TF) is a framework designed for machine learning dataflow, which
is used to design a Convolutional Neural Network for the object (i.e. bubble
and channel) recognition, classification, and regression. Besides Tensorflow, a
good number of Python-based open source frameworks for the implementation
of Artificial Intelligence (AI) and Convolutional Neural Network are already
developed. Amongst them, Keras, Theano, Torch, Caffe, YOLO, Microsoft
Cognitive Toolkit (Microsoft CNTK) and scikit-learn are popular.

A large number of dataset or samples (training image set and test image set)
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1.2. Objective and Motivation

is used to train a Tensorflow model. With the dataset, the model is trained till
a satisfactory number of iterations. The number of iteration and the changes
in losses with iterations is visualized in a graph. When the losses reach a cer-
tain level, the training process is stopped immediately. After being properly
trained and tested, the Tensorflow model is applied to an image for evaluation.
The model provides a number of rectangles, where each rectangle contains air
bubble or brine channel individually.

Usually, an air bubble is of circular or elliptical shape and a channel is elon-
gated. Therefore, an object does not logically cover the whole rectangle area
solely; rather the rest part of the rectangle is covered by the image background.
Once a rectangle is determined, it becomes easier to derive the pure object from
the rectangle using OpenCV and Matlab. OpenCV and Matlab have plenty of
tools that help us to bring out the whole object from the rectangle area.

Area refers to the occupied number of pixels in an image of an object. Then
the number of pixels multiplied by the area of each pixel in unit millimetre
square (mm2) returns the total area in millimetre square (mm2).
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2. Theoretical Background

2. Theoretical Background

2.1. CNN Architecture

Mathematically, Convolution is an operation by which a given filter consisting
of certain weights applies to the input image, then convolves the image pixel
by pixel, performs an operation [29] and the output from the convolution is
carried forward for further processing. CNN’s are comprised of an input layer,
a group of hidden layers and an output layer. Usually, hidden layers in CNN
include convolutional layers, pooling layers, activation layer, fully connected
layers, and normalization layers. The output from one layer is fed as input to
the next layer accordingly and finally, the output layer determines the class of
the object. The flow chart of CNN architecture is shown in figure 2.1 [14].

Figure 2.1.: CNN architecture [3] [14]

2.1.1. Input Layer

An image has a certain number of pixels and channels whereas each pixel holds
a value of the color. A machine can read images only by the color values or
pixel values in different channels. The input layer holds the pixel values of
the image. A grayscale image with its pixel values is shown in figure 2.2. A
small block of a picture is shown in a table where the value 0 represents black
color and 255 represents white color. The other values in between 0 and 255
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2.1. CNN Architecture

represent other color levels of grayscale. This is how our local machine splits
the image into a table or matrix of pixels [1].

Figure 2.2.: Distribution of pixels in image shown on a large scale to represent
pixel values [8].

2.1.2. Convolutional Layer

A Convolutional layer consists of a certain number of filters or neurons. Each
filter is designed with its weights in such a way so that after the convolution a
specific feature can be extracted [1]. By each iteration of training, the weights
are learned such that feature that can be precisely extracted and the losses
[2.2] are minimized. If one filter determines the presence of edges in images,
other filter extracts the color value or calculates if there is any corner and so
on [1]. In the convolutional layer, the input image is convolved and the dot
products output after the convolution with each shift of one pixel by one pixel
to left and downwards forms a new matrix [figure 2.3].

2.1.3. Stride and Padding

In Machine Learning, hyperparameters are some tuning parameters which are
usually tuned before starting the training to control the behavior of the Machine
Learning model [13]. In figure 2.3, it is shown that the filter or matrix is shifted
left and downward by one pixel. The filter can be shifted by pixels of pre-
defined number value as well, which can be set as a hyperparameter. In CNN
architecture, this hyperparameter is called Stride. If stride is set to 2, then the
matrix will move by 2 pixels at a time [figure 2.4].

Padding means adding a zero or non-zero column or row at the end or begin-
ning of a matrix. The main purpose of padding is to prevent data at the edges
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2.1. CNN Architecture

Figure 2.3.: Initial steps of convolution, a 3 × 3 filter (b) applied to an image
matrix (a) results in (c)

Figure 2.4.: Convolution with Stride=2, filter (red color) moves by 2 pixels
after each step

of the image from being lost after convolution. Padding with zero columns
and rows is known as zero-padding [figure 2.5]. As the resulting image shape
decreases with the increase of stride value, padding helps it to keep balance on
image shape [1]. Padding can also be done by adding two zero columns in case
if the stride value is two.

2.1.4. Pooling Layer

Sometimes it happens that the size of the image is extremely large and it needs
to be reduced. The pooling layer (also known as the downsampling layer)
applies a filter of a given size (e.g. 2× 2) to an image that combines the pixel
values into one. There are two different types of pooling normally used in CNN;
max pooling and average pooling. Max pooling takes the maximum value from
the cluster, whereas the average pooling calculates the average value from the
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2.1. CNN Architecture

Figure 2.5.: Zero padding; zero columns (light blue) are added at the edge of
the image matrix (blue)

cluster where the pooling filter is applied figure 2.6.

Figure 2.6.: Max Pooling and Average Pooling

2.1.5. Output Dimension

The output image after the convolution is denoted as an activation map. Since
after the convolution with each of the filter the size of the output image deviates
from its original size, after a few filters applied on the input image, the size of
the output image is hard to predict. The three following parameters affect the
shape of the output image.

Number of Filters: The depth of the activation map is the same as the
number of filters applied on the input image. For example, if ten 3 x 3 filters
are applied on an input image, the depth of the activation map will be 10 and
the other size parameters will vary according to stride value and zero padding.
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2.1. CNN Architecture

Stride: An increase in stride value decreases the number of rows and
columns of the activation map accordingly. As in figure 2.4, it is observed
that a stride value of 1 has decreased the rows and columns by 2. Similarly, a
stride value of 2 will decrease the rows and columns by 4.

Zero Padding: Zero paddings add zero column and zero rows in input im-
age before convolution, which in result increases the dimension in the activation
map.

The dimension size of the activation map can be measured by a simple for-
mula: ([W-F+2P]/S) +1, where, F is the size of the filter, W is the input image
dimension, P is the number of padding applied and S is the Stride value.

Suppose 10 filters of size 5*5*3 (F=5), with single stride (S=1) and no zero
padding (P=0) are applied on a RGB color image of size 32*32*3 (W=32), the
dimension of the activation map will be ([(32-5+0)/1] +1=) 28 and the depth
will be of the number of filters applied on that image i.e. 10. Therefore, the
activation map will have a size of 28*28*10.

2.1.6. Output Layer

After the convolution and padding in the different layers are performed, the
output layer then determines the class in which the object belongs to. The
output layer will have the same number of neurons as the number of classes
[3.1]. As already all of the features are properly detected and sizes of the
parameters are sufficiently reduced, the data is then transmitted to the neurons
of the output layer. Through the activation function, the weighted sum of the
output layer neurons identifies the particular class of this object (figure 2.7)[2].
The output layer also calculates a loss function [2.2] according to model designs.
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2.2. Single Shot MultiBox Detector (SSD)

Figure 2.7.: Output layer. The weighted sum of the input features is fed to the
Activation function, which determines the class where it belongs
to.

Once the forward propagation is complete and the loss does not go under
a predefined threshold value, the error is then fed back to the network again
and backpropagation begins to update the weight and biases for error and loss
reduction.

2.2. Single Shot MultiBox Detector (SSD)

SSD model was first published at the end of November 2016. The main idea
behind designing SSD is to overcome the drawbacks of Faster R-CNN regarding
the training speed issue. Faster R-CNN is a region-based Convolutional Neu-
ral Network. Faster R-CNN consists of 2 different networks: region proposal
network (RPN) for generating region proposals and a network using these pro-
posals to detect objects [5] [31]. In SSD, object localization and classification
are processed by a feed-forward pass of the designed convolutional network,
which produces a collection of rectangle boxes with different fixed-size shapes
and scores that represents the probability of the presence of objects [27]. Non-
maximum suppression is then applied to find out the final detection among
all of the boxes. SSD is comprised of 22 different layers. Structurally, Visual
Geometry Group-16 (VGG-16) network is used as a base network [figure 2.8].
VGG is a convolutional neural network used for feature extraction and VGG-
16 refers to the VGG model along with 16 weight layers. SSD adds 6 more
auxiliary convolution layers after the VGG-16 [11].

A group of convolutional feature layers with a gradual decrease in size are
added at the end of the base network to obtain the predictions of detections at
multiple scales. Each added feature layer produces a fixed set of detection pre-
dictions applying a set of convolutional filters. In order to form a feature map
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2.2. Single Shot MultiBox Detector (SSD)

Figure 2.8.: SSD model architecture [27]. SSD adds 6 more auxiliary convolu-
tion layers after the VGG-16 [11].

of size m x n with p channels, the size of the basic element which eventually
predicts a potential parameter and provides either a score or a rectangle box
shape related to the default box parameter is of 3 x 3 x p sized small kernel.

Losses: Once the detection or rectangle boxes are predicted, the next step is
to calculate the amount of losses. During prediction, the SSD model calculates
two basic losses.

• Localization Loss

• Confidence Loss

Localization loss refers to how much the predicted rectangle boxes are shifted
or deviated from the ground truth rectangle box. Localization loss is expressed
mathematically by equation (2.2.1). xkij is an indicator for matching the ith

default box to the jth ground truth box of k class. N is the total number of
default boxes. l is the parameter of the default bounding box and g is the
parameter of the ground truth rectangle box. The parameters are the center
of the rectangle (cx, cy), width (w) and height (h). Localization loss between
the predicted box l and the ground truth box g is defined as the smooth L1
loss.

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈cx,cy,w,h

Xk
ijsmoothL1(l

m
i − ĝmj ) (2.2.1)

ĝcjx = (gcxj − dcxi )/dwi (2.2.2)

ĝcyj = (gcyj − d
cy
i )/dhi (2.2.3)

16



2.2. Single Shot MultiBox Detector (SSD)

ĝwj = log(
gwj
dwi

) (2.2.4)

ĝhj = log(
ghj

dhi
) (2.2.5)

Confidence loss is mainly the classification loss calculated by equation (2.2.6).
It is obtained from the Softmax function from the Tensorflow’s Python pack-
ages. The Softmax function measures the probability that the training sample
belongs to a particular class as compared to belongs to other classes [equa-
tion (2.2.7)].

Lconf (x, c) = −
N∑

i∈Pos

xpij log(ĉpi )−
∑

i∈Neg

log(ĉoi ) (2.2.6)

where

ĉpi =
exp(cpi )∑
p exp(cpi )

(2.2.7)

Total loss is the weighted sum of localization loss and classification loss [equa-
tion (2.2.8)].

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g) (2.2.8)
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3. Training Procedure

3. Training Procedure

The main idea behind the study is to detect air bubbles and brine channels in
Arctic sea ice. Therefore, the objects are air bubbles and brine channels for
what a convolutional neural network (CNN) is trained with a good number of
training samples. Training samples are divided into 2 different datasets. One
is a training data set and another one is test data set. The train data set is
used to train the model or to be processed to extract the significant features
and the test data set is used for evaluating the features and calculating the
losses where the extracted features are applied for detection.

3.1. Terms Related to Training Step

Some important terms which are related to training steps are:

Class: In Convolutional Neural Network, class refers to the number of dif-
ferent possible objects, for what the network is trained. For example, our
CNN model is trained for 2 different kinds of objects (i.e., air bubble and brine
channel) detection. So the number of classes is 2.

Weight: Each of the convolutional layers has multiple neurons or filters.
Each of the values of filters is known as weight. When a filter is applied on an
input image matrix, the elements of the input matrix are multiplied with the
weights of the filter. A weight with zero value means that the feature is not
significant.

Bias: In addition to the weights, there is another linear component which is
added with the result of multiplication between weight matrix and input image
matrix. The linear component element is called Bias. For example, if the input
image matrix is a and a weight element of the filter is W1, then the operation
of weights and bias b can be expressed as [(a * W1) + b]

Activation Function: After multiplication by weights and addition by
bias, the activation function is applied to the result to transform the input

18



3.1. Terms Related to Training Step

signal to the output signal in a layer. The most common activation functions
used in CNN are Sigmoid function, Rectified Linear Unit (ReLU) and Softmax
[35].

Forward Propagation: The output signal of the activation function of
a layer is then fed to the next layer. The movement of input through the
convolutional layers to the output layer is called forward propagation.

Gradient Descent: If the extracted feature does not predict the object
well, it results in large amount of loss. In order to optimize the loss function,
the value weights and biases are needed to increase or decrease slightly so that
minimum loss point is met.

Learning rate: The amount of increase or decrease in weights and biases
is known as the learning rate. A large value in learning rate returns large
fluctuation in total loss and small value in learning rate controls the curve
smoothly.

Back Propagation: The update in weights and bias is then fed again to
the first convolutional layer so that the CNN model extracts more significant
features than before so that the loss is minimized. This process of feeding back
the values is called Back Propagation.

Iteration: Iteration is a single time procession of the forward propagation,
gradient descent, and the back propagation. That means when each of these
processes is done for once and all of them are completed, it is then said a single
iteration is finished.

Batch Size: It is a parameter in machine learning by which the number of
training samples is mentioned which will be utilized on a single iteration for
feature extraction. Depending on the speed of the system where the training
will be processed, the batch size has to be chosen.

Epoch: Once all of the training samples are processed of forward and back
propagation for once, then it is considered as 1 epoch.

For example, the total number of training samples is 100, the batch size is
defined as 10, therefore, once 10 samples are processed it is measured as 1
iteration. So the number of iterations needed for 1 epoch is (total sample

19



3.2. Training Steps

divided by the batch size i.e. 100/10 =) 10. After the training is complete,
the total number of the epoch can be calculated by dividing the number of
iterations by the number of iterations needed for 1 epoch (i.e. 10).

3.2. Training Steps

Ice cores are the cylindrical ice samples obtained across the entire depth of an
ice floe in the Arctic sea by employing ice core auger [19]. Ice cores are cut into
the height of 10 centimeters slices by using chop. Then using a microtome,
rectangular shaped cross-sections with a thickness of 2 meters are obtained
from the slices which are called thick sections of the ice core. After that, im-
ages are captured from the thick sections.

A total of 78 thick sections images from 12 different ice cores are provided for
training and testing the CNN model. The model is applied to the thick section
images of 8 different ice cores. For the demonstration purpose, air bubble and
brine channel detection images and plots of area, circularity and Provability
Density Function (PDF) for 5 thick section images of only the Core 1 [A.4],
which was provided by N-ICE2015 Campaign [22][32] are shown here. In chap-
ter 5, how the number of air bubbles is changing with respect to the depth of
the ice core is summarized for 5 different ice cores. Typical thick section images
for Core 1 [A.4] is shown in figure 3.1. The air bubble and brine channel, which
are detected, are shown in figure 3.2 and figure 3.3. Some typical air bubbles
occurrence in the ice core are shown in figure 3.4 with blue rectangles.
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3.2. Training Steps

Figure 3.1.: Ice core images arranged from top of the core(provided by N-ICE
2015 campaign [22]. Centimeter scale is shown at the left. The
1st, 3rd and 5th image of the ice core are shown on large scale.
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3.2. Training Steps

Figure 3.2.: Some typical air bubble samples

Figure 3.3.: Some typical brine channel samples
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3.2. Training Steps

Figure 3.4.: Some typical air bubbles in the Arctic sea ice (blue rectangle)

Annotation is a term used in machine learning refers to label the objects
manually by drawing a rectangle box. By annotation, the information about
the location and dimension of the object can be delivered to the CNN model.
As the shape of each image was extremely large (average size is approximately
1800× 1800 pixels), all of the JPEG images are cropped into 200× 200 pixels
sample PNG format image in order to release the complexity of Annotation.
After conversion to 200× 200 pixels, the total amount of sample images is now
7128, where all of the samples don’t contain the desired object itself and even
a good number of samples contain core edge or noise. Therefore, a sum of
1397 samples of 200 × 200 pixels size is manually filtered from 7126 samples
for annotation. A few researchers suggest to divide the whole dataset into a
training dataset and test dataset following an approximately 3:1 ratio [12],[10].
Keeping in mind that in order to obtain a potential detector, the number of
training samples has to be more than the number of test samples, amongst
1397 samples, 939 samples are annotated as train samples and the rest 458
sample is annotated as test samples using the annotation tool labelImg [A.2].
After annotation in a single image, an XML file is automatically generated
by the labelImg which explains the location and dimensions of the annotated
object. Once the annotation is completed, all of the generated .xml files from
the training sample and test sample are converted to a separate single CSV
file, which is delivered to the CNN model for training.

Before starting training, one important step is to set the hyperparameters.
Therefore some important hyperparameters in the configuration file are set in
the following way and the other hyperparameters are kept unchanged from the
default value. All configuration information are written in Appendix section
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3.2. Training Steps

A.3.

num classes : 2
i m a g e r e s i z e r {

f i x e d s h a p e r e s i z e r {
he ight : 200
width : 200

}
}

t r a i n c o n f i g : {
b a t c h s i z e : 12
opt imize r {

rms prop opt imizer : {
l e a r n i n g r a t e : {

e x p o n e n t i a l d e c a y l e a r n i n g r a t e {
i n i t i a l l e a r n i n g r a t e : 0 .0002
decay s t eps : 800720
d e c a y f a c t o r : 0 .95

}
}
momentum optimizer value : 0 . 9
decay : 0 . 9
e p s i l o n : 1 . 0

}
}

Once all hyperparameters are set, then the next step is training the SSD
model for the dataset. SSD model starts with a loss of about 20, and it is
recommended to train the model until the loss is consistently under 2. When
the training is started, the loss is started decreasing from a value 20.3640. The
beginning steps of training are shown in figure 3.5.

The model is trained up to 300000 steps of iteration. The model is trained
on the system called exzellnc021. The hardware information of exzellnc021
is briefly written in Appendix A.5. The total training time required on that
system is around 56 hours. Training steps at the end with the amount of loss
can be visualized in figure 3.6. It shows the amount of total loss is reached to
around 2.3

The model is trained up to 300000 steps of iteration. It took around 56 hours
of time to reach this level. Training steps at the end with the amount of loss
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3.2. Training Steps

Figure 3.5.: Training steps at the beginning of training. Calculated loss (at
step 1=18.5128) is gradually decreasing (at step 26=13.5814).

can be visualized in figure 3.6. It shows the amount of total loss is reached to
around 2.3.

Figure 3.6.: Training steps at the end of training. Calculated loss is 2.3890 at
final step (at step 300000).

Therefore the number of Epoch can be calculated from the total number of
training iteration divided by the number of iterations needed for processing
all of the samples for once. The number of iterations needed for processing
all of the samples for once can be obtained from the total number of training
samples divided by the batch size. That is (i.e. 939/12 =) 78.25. Therefore,
the number of Epoch is (300000/78.25 =) 3834.
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Tensorboard is a visualization tool of Tensorflow. While the model is train-
ing, localization loss, classification loss, and total loss is observed from Tensor-
board. During the training, Tensorboard can be opened from any browser by
running the following command in command terminal.

tensorboard −− l o g d i r=t r a i n i n g

After training has completed, all of the loss graphs are collected from the
Tensorbord of the system server. Classification loss, localization loss and total
loss graph are shown in figure 3.7, figure 3.8, figure 3.9.

Figure 3.7.: Classification loss. The curve (orange color) represents the contin-
uous reduction of classification loss over the training steps.

Figure 3.8.: Localization loss. The curve (orange color) represents the contin-
uous reduction of localization loss over the training steps.
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Figure 3.9.: Total loss curve; sum of the classification loss and localization loss

3.3. Bubble Detection Results on Image

A checkpoint is a term related to CNN model training, referred to as the
training records for a certain breakpoint. By default, the checkpoint is set to
be saved after every 223 steps and the number of the latest checkpoint to be
saved is set to 5. In our training, the number of the latest checkpoint to be
saved is changed to 30, so that a variety of checkpoints can be evaluated to
obtain our best detection result.

After that, the latest checkpoint which is saved at step number 299205, is
used to generate our frozen inference graph. The frozen inference graph is
a record file of all features extracted during training steps that work as an
object classifier. So the frozen inference graph is our main air bubble and
brine channel detector and can be applied to the image directly. The trained
classifier is applied to 5 top images of a multi-year ice core 1 [A.4]. The images
of Core 1 are independent and not a part of the train and test image set. The
images before and after classifier applying are shown below (from figure 3.10 to
figure 3.19). On the resulting images where the detector is applied, the green
rectangles represent air bubbles and yellow rectangles represent brine channels.
The thick section images of multi-year ice core 1 [A.4] are arranged in such a
way that Image 1 is taken from top of the core and the objects of Image 1 are
located very near to upper sea surface and Image 5 is taken from bottom of the
core and the objects of Image 5 are located in depth of around 40 centimeters
from the top.
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3.3. Bubble Detection Results on Image

Figure 3.10.: 1st section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:5cm

Figure 3.11.: 1st section from top of multiyear ice core 1 obtained from N-
ICE 2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:5cm; analysed on 18.06.2019)
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Figure 3.12.: 2nd section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:9cm

Figure 3.13.: 2nd section from top of multiyear ice core 1 obtained from N-
ICE 2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:9cm
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Figure 3.14.: 3rd section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:9cm

Figure 3.15.: 3rd section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:9cm
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Figure 3.16.: 4th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:11cm

Figure 3.17.: 4th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after bubble and channel detection;
width:10cm; height:11cm
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Figure 3.18.: 5th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:6cm

Figure 3.19.: 5th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:6cm
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3.4. Performance Evaluation

The model is able to detect air bubbles accurately in most cases. Brine chan-
nels, however, are detected less reliably and are missed in many cases. As the
model’s brine channel detection is still unsatisfactory, the performance of the
brine channel detection is not evaluated. The following terms will be used to
evaluate the performance of the air bubble detection.

True Positive(TP) are the number of correctly identified air bubble as air
bubble by detector.

False Positive(FP) are the number of objects which are not air bubble,
but incorrectly identified as air bubble.

Precision Rate is the ratio of True Positive (TP) to the sum of True Positive
(TP) and False Positive (FP) [18].

True Positive and False Positive are manually counted.

Test Sample True Positive False Positive Precision Rate

Image 1 451 37 92.42%
Image 2 934 66 93.4%
Image 3 772 44 94.61%
Image 4 792 225 77.87%
Image 5 322 113 74.03%

Table 3.1.: Result of air bubble detector
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4. Analysis of Statistical Information
of Air Bubble

4.1. Extraction of Air Bubble Contours

It is already clear to us that the above-explained model detects rectangles cov-
ering the air bubble, rather than solely the air bubble. After the air bubbles in
the rectangle are properly detected, the next task is to extract a pure air bub-
ble from the rectangle and then to derive the area, perimeter, and circularity
of the air bubble. In order to extract the pure bubble, contours approximation
method is applied on the rectangle. Contour is a curve or a boundary drawn
by joining all continuous points of same colour or intensity. OpenCV libraries
have functionality to find the contours in an image, which also provides the
area of the contours and circumference of the contours [4].

As the contour approximation method works more accurately on the binary
image, binary thresholding is applied, at first, to the air bubble sample image.
As binary thresholding works only on a grayscale image, the color space of the
air bubble sample image is converted to grayscale color space. Therefore, if the
color space of the sample image is grayscale, it remains unchanged, otherwise,
it converts to grayscale color image. For the binary thresholding, the average
pixel value is set as a binary threshold value. The average pixel value is the
ratio of the sum of all pixel values to the number of the total pixels (i.e. rows
multiplied by columns). The result of binary thresholding on an air bubble
sample image is shown in figure 4.1.

Figure 4.1.: Air bubble sample image (left) and binary thresholded image
(right), Threshold value (T) = mean pixel value
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The contour approximation method provided by OpenCV extracts different
brighter pixel regions separated by the darker pixel boundaries. As a bubble
is a region of brighter pixels surrounded by a comparatively darker boundary,
it may provide more than one region, which needs another filtering process to
distinguish one region from another to obtain the air bubble area. Contour
approximation is applied to the air bubble sample image of figure 4.2, which
results in 4 regions [figure 4.1]. Our Region of Interest (ROI) is the black re-
gion of the image including the inner 2 white regions, which is more complex
to extract.

Figure 4.2.: Contour approximation applied on binary thresholded image, de-
tected contours are marked by 1,2,3 and 4

To overcome this problem, the binary inversion is applied to the binary
thresholded image. Binary inversion refers to convert the white pixels to black
pixels and black pixels to white pixels. After that, contour approximation is
applied to the binary inverted bubble image, which results in only one region.
OpenCV has functionality which checks for convexity or cavity inside a Region
of Interest (ROI) and corrects it [figure 4.3].

Figure 4.3.: Binary thresholded image (left), binary inverted image (mid-
dle)(detected contour marked by 1), cavity filled image (right)

A few air bubbles with contours detection results are shown in figure 4.4. In
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4.1. Extraction of Air Bubble Contours

the case, if a rectangle contains only a part of the bubble or even doesn’t contain
an air bubble itself, detection of bubble contour by contour approximation
method would be ambiguous. Such kind of partial bubble contour detection
shown in figure 4.5. In figure 4.5, it is observed that there is more than one
air bubble in the rectangle obtained from the air bubble detection model. As
three bubbles are located very nearly from one another, contour approximation
method detected one region covering these three bubbles, that’s why calculated
area and perimeter for the whole region as one bubble.

Figure 4.4.: Contour approximation applied on air bubble rectangle

Figure 4.5.: Contour approximation applied on partial-bubble rectangle

Statistical information like area and perimeter of the contour are obtained
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from the contour, which are used for further analysis. The area and perimeter
calculated for the air bubbles shown in figure 4.4, is narrated in table 4.1

Test Sample Rectangle Area Bubble Contour Area Perimeter

Case 1 195 Pixels 74 Pixels 33.55
Case 2 660 Pixels 268 Pixels 103.74
Case 3 374 Pixels 175 Pixels 51.79
Case 4 506 Pixels 300 Pixels 72.53
Case 5 378 Pixels 135 Pixels 66.63
Case 6 990 Pixels 517 Pixels 93.25
Case 7 396 Pixels 174 Pixels 63.94

Table 4.1.: Rectangle area, air bubble contour area, perimeter of 7 different
cases shown in figure 4.4

4.2. Analysis of Shape and Statistical Properties of Air
Bubble

All of the core images have sizes on the millimeter scale. The area of a single
pixel in the millimeter square unit for each image is calculated by dividing the
area of the image in millimeter square (i.e. width multiplied by height) by the
number of pixels of the image (i.e. rows and columns of image).

Circularity : Circularity is a measure of the roundness of an object. It rep-
resents, how close an object is from a true circle or how much an object has
deviated from a true circular shaped object with the same area. Circularity is
measured by the following formula [6].

Circularity = (4 ∗ π ∗Area)/(Perimeter)2

In this point, area and circularity extraction and calculation methods are in-
cluded in the air bubble detection model. Therefore, once the air-bubble detec-
tion model is applied to an image, besides the air bubble detection, it provides
Area and Circularity for all bubbles for each of the images in Centimetre scale
which are plotted in the graph.

In chapter 3, it is shown that how Air bubble detection model detects Air
Bubble rectangle for 5 images (figure 3.10 to figure 3.19 and table ??) in a
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sequence of one core. In this chapter, Areas are calculated for all of the air
bubbles and is plotted for those 5 images. Alongside, in order to visualize how
the number of air bubbles of the area above 0.5 mm2 is changing with respect
to the depth of cores, summary plots regarding bubble area for 5 different ice
cores are included (figure 4.18 to figure 4.21). Here, figure 4.6 to figure 4.10
shows the area of the ith bubble in the Y-axis and the arbitrary sample of
detected bubble i in the x-axis.

Mean area and Standard Deviation are measured as well by the formula [23]
given below. Mean area and Standard Deviation are added on the top of the
respective figures.

Mean(area) =

N∑
N=1

area(N)

N
(4.2.1)

SD(area) =

√√√√√√
N∑

N=1

|Mean− area(N)|2

N
(4.2.2)

Figure 4.6.: Area of the detected air bubbles in 1st thick section image of ice
core 1 [A.4], Depth=0-5 centimetre from the top of the core, x-axis
represents the arbitrary sample or detected air bubble i, y-axis
represents the area of the corresponding ith air bubble.
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Figure 4.7.: Area of the detected air bubbles in 2nd thick section image of
Core 1 [A.4], Depth=5-14 centimetre from the top of the core, x-
axis represents the arbitrary sample or detected air bubble i, y-axis
represents the area of the corresponding ith air bubble.

Figure 4.8.: Area of the detected air bubbles in 3rd thick section image of Core
1 [A.4], Depth=14-23 centimetre from the top of the core, x-axis
represents the arbitrary sample or detected air bubble i, y-axis
represents the area of the corresponding ith air bubble.
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Figure 4.9.: Area of the detected air bubbles in 4th thick section image of Core
1 [A.4], Depth=23-34 centimetre from the top of the core, x-axis
represents the arbitrary sample or detected air bubble i, y-axis
represents the area of the corresponding ith air bubble.

Figure 4.10.: Area of the detected air bubbles in 5th thick section image of
Core 1 [A.4], Depth=34-40 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble.

The circularity of air bubbles in those images is calculated and plotted by the
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4.2. Analysis of Shape and Statistical Properties of Air Bubble

model. These circularity plots are analyzed by sorting values from minimum
to maximum values. Circularity plotted for the 1st thick section of ice core 1
[A.4] is displayed here.(figure 4.11).

Figure 4.11.: Circularity of detected air bubbles in 1st thick section of ice core
1 [A.4](sorted from minimum to maximum), x-axis represents the
arbitrary detected air bubble sample i, y-axis represents the cir-
cularity of the corresponding ith air bubble.

From the circularity of air bubbles, Mean Circularity and Standard Deviation
(SD) are calculated and summarized in table 4.2.

Core 1 Detected Bubbles Mean Circularity Standard Deviation

Image 1 303 0.4597 0.192
Image 2 648 0.4561 0.1884
Image 3 490 0.5061 0.1850
Image 4 509 0.5 0.1789
Image 5 201 0.4580 0.1603

Table 4.2.: Calculated mean and Standard Deviation of circularity for images
of Core 1 [A.4]

Probability Density function (PDF): Probability density function (PDF) is
simply a curve of continuous random variable points. It represents the relative
probability of occurrence of a particular range of discrete values or a particular
discrete value [15]. PDF plot is drawn with respect to the area of air bubbles
for 5 thick section images of ice core 1(A.4) images (figure 4.12 to figure 4.16).
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Figure 4.12.: Histogram and PDF with respect to area of air bubbles detected
in 1st thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0263 [A.4]

Figure 4.13.: Histogram and PDF with respect to area of air bubbles detected
in 2nd thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0837 [A.4]
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Figure 4.14.: Histogram and PDF with respect to area of air bubbles detected
in 3rd thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0421 [A.4]

Figure 4.15.: Histogram and PDF with respect to area of air bubbles detected
in 4th thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0266 [A.4]
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Figure 4.16.: Histogram and PDF with respect to area of air bubbles detected
in 5th thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0134 [A.4]

For further analysis, air bubbles of area above 0.5 square millimetre is plotted
in figure 4.17.
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Figure 4.17.: Number of air bubbles with area above 0.5 mm2 in Core 1 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core

The plot shows that the number of bubbles above a certain area (0.5 mm2)
decreases with the increase of depth. That means the number of big sized
bubbles is decreasing as it goes towards the bottom of the sea ice level. As
there is not any significant change in the number of bubbles, so the number of
smaller bubbles is increasing oppositely. As the heights of Image 1 and Image
5 in Core 1 (A.4) are half (5 Centimetre) of the heights of other Images (10
Centimetre) of Core 1, the number of bubbles for those 2 Images are doubled
only for our comparison purpose.

Similarly, air bubbles of the area above 0.5 square millimeters are analyzed for
the other cores as well. Here the plots are added for Core 2, Core 3, Core 4,
and Core 8 (figure 4.18 to figure 4.21) [A.4].
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Figure 4.18.: Number of air bubbles with area above 0.5 mm2 in Core 2 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core

Figure 4.19.: Number of air bubbles with area above 0.5 mm2 in Core 3 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core
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Figure 4.20.: Number of air bubbles with area above 0.5 mm2 in Core 4 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core

Figure 4.21.: Number of air bubbles with area above 0.5 mm2 in Core 8 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core
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5. Summary and Discussion

Satellite sensors play an important role in analyzing global sea ice properties.
Since 1970, researchers are using satellite sensors in order to monitor global
sea ice properties that operate on microwave frequency range (from 1 GHz to
300 GHz). Global ice properties include ice drift, ice deformation, ice growth,
snow depth, ice thickness, etc which can be further used to estimate global sea
ice volume, fluxes, and variabilities. During the time period between the 1980s
and 1990s, Satellite SLR systems were used extensively to monitor Russian sea
ice (Johannessen et al. 2000; Alexandrov et al. 2000) [26]. Sea ice extent and
other ice parameters are monitored using the data obtained from polar-orbiting
satellites (Johannessen et al. 1992, 1995, 1999, 2005; Jackson and Apel 2004)
[25]. Based on the data received from Advanced Microwave Scanning Radiome-
ter for EOS (AMSR-E/2) remote sensing system, snow depth is retrieved over
first-year ice (FYI) and multiyear ice (MYI)(Rostosky et al.,2018)[33].

Air bubble occurrence is observed in the upper layer of Arctic sea ice. The
air bubble inclusions scatter microwaves and thus changes the observed bright-
ness temperatures from microwave radiometer and radar satellites over sea ice.
This affects several sea ice related retrievals i.e. snow depth on Arctic sea ice
retrieval (Rostosky et al.,2018).

In this thesis, the goal is to detect the air bubbles and brine channels by using
the Convolutional Neural Network and analyze the area, circularity, and den-
sity of the bubbles inside the ice cores. The data collected in this stage is later
statistically analyzed in terms of the Probability Density Function.

SSD model is trained for air bubbles and brine channel detection from Arctic
sea ice core images. The Performance of the trained SSD model is measured in
terms of Precision Rate. An average of 86.47% precision rate is obtained from
this evaluation. The detection results show that elongated brine channels are
detected partially and in some cases, the brine channels are not detected at all.
As brine channel detection was not satisfactory, it is not continued for further
analysis. There are some reasons behind the imprecise detection of the brine
channel. Firstly, the Sea ice core images (JPG) contain noises that are some-
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times elongated and look like brine channels. The model detects those noises
instead of brine channels. Secondly, the number of presence of brine channels
is less in the samples (200×200 pixels) used for training and testing. In results,
the features of the brine channel extracted during training are insufficient for
detecting brine channels independently. Finally, the partial detection of brine
channels is related to the shape of the samples (200× 200).

The provided ice core images are approximate of size 1800 × 1800 pixels. As
the images with higher resolution are difficult to train, the resolution was re-
duced to 200 × 200 pixels. During the initial evaluation of the model using
high-resolution images, it randomly detected big rectangles which contained
a few bubbles or didn’t even contain a single one. Later, with the 200 × 200
pixel images a significant improvement is observed as the model detected air
bubble more accurately. As they are small and singular entities, this approach
produced better results for air bubbles. On the other hand, brine channels are
continuous, elongated entities that cover more than one 200 × 200 pixel area.
Therefore, it resulted only in partial detection of the channel.

The convolution results on a 200× 200 sample are not carrying forward to the
neighboring 200 × 200 samples. Therefore, partial detection of brine channel
doesn’t get any relation with it’s another part which is located on the neigh-
boring samples. In the future, an algorithm or method can be studied and
implemented which finds the relation between the neighboring samples inde-
pendently regarding brine channel beside detection so that the partial detection
problem can be solved.

All kinds of statistical information for air bubbles (i.e. Area, Circularity, Mean
and Standard Deviation of Area and Circularity and Probability Density Func-
tion, etc.) are analyzed in the progress. Only the results obtained for Core
1 (A.4) is presented in detail in this report. Other Core results are briefly
presented in tables and bar charts. From table 3.1, the average Circularity and
average Standard Deviation of Circularity for air bubble measured are 0.48 and
0.18 respectively. M. E. Shokr and N. K. Sinha identified air bubbles on their
study [34] in digital images of vertical thin sections from 5 hummocks and 5
melt pond multi-year ice core. On their investigation, air bubble circularity for
hummock ice core and melt pond ice core calculated are 0.68 and 0.62 respec-
tively and Standard Deviation of circularity for air bubble found for hummock
multi-year ice core is 0.12 and for melt pond multi-year ice core is 0.19.
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A. Appendix

A.1. Installation Procedure

The following open source software and libraries have to be installed and en-
vironment has to be set up for CNN model training. All of the installations,
environment set up and training steps are accomplished in Linux operating
system as recommended from the department administration but these steps
can be done in Windows operating system as well.

Anaconda: Anaconda is an open source distribution of Python packages.
It allows a user to create separate virtual environment for multiple project.
Once the permission from the administrator is granted, Anaconda is installed
in our Ubutu 16.04 LTS system and a virtual environment is created using the
command line terminal by the following command.

conda c r e a t e −n t e n so r f l ow pip python =3.5

By this command, a virtual environment named ”tensorflow” is created in-
side the Anaconda for Python version 3.5.Once an environment is successfully
created, the environment can be activated by the following command.

a c t i v a t e t en so r f l o w

The following libraries and python packages are installed inside this virtual
environment.

TensorFlow: TensorFlow is a set of open source libraries designed for Con-
volutional Neural Network. All of the libraries and functionalities are pro-
grammed in Python. Therefore inside the virtual environment, Tensorflow is
installed.

pip i n s t a l l −−upgrade t en so r f l ow

In the case, Tensorflow is already installed inside the environment with lower
version, to upgrade the Tensorflow version the following command has to be
run.

pip i n s t a l l −−ignore− i n s t a l l e d −−upgrade t en so r f l ow
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When Tensorflow is properly downloaded and installed, a good number of
pre trained CNN model are stored in the installation folder. Amongst all of the
pre trained models, SSD mobilenet is chosen to train for air bubble and brine
channel detection because of its fast training speed as compared to others.

OpenCV: OpenCV is also a group of open source libraries and tools for
2D and 3D image processing. OpenCV provides tools and functionalities for
feature extraction from images. To derive statistical information like area and
circularity, OpenCV libraries are used. OpenCV is installed inside the Conda
environment by the following command.

pip i n s t a l l opencv−python

MatplotLib: MatplotLib is a Python 2D plotting library used here for
plotting Provability Density Function (PDF), Circularity, Area and Frequency
of Bubble. MatplotLib is installed by following.

pip i n s t a l l matp lo t l i b

Jupyter Notebook: Jupyter Notebook is a Python scripting platform which
provides shell to run and test individual line of code, is installed by following
command line.

pip i n s t a l l jupyte r

Pandas: Pandas library is used to generate the TFRecord files during the
training.

pip i n s t a l l pandas

Matlab Engine: Matlab has also a plenty of built-in tools for image pro-
cessing, deriving information and feature extraction from image. In order to
use Matlab tools or function or to run Matlab script in a Python framework, at
first Matlab has to be installed on that system. The version of Matlab should
be of version 2014B or above with Pyhton 2.7 or 3.4 or 3.5.

In our case, Matlab 2016A was installed in the system. A setup.py can be
found in the root directory of Matlab. Matlab root directory is identified by
running the following command in Matlab command window:
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>> matlabroot

Then in the following directory, setup.py is located.

\\− matlabroot − \\ extern \ eng ine s \python

This setup.py has to be run inside the Conda virtual environment which is
already created named ”tensorflow”. After that, matlab.engine has to be im-
ported in the Python script in order to use Matlab tools.

Other Libraries: Other subsidiary libraries which are installed as well
inside the environment are Pillow, lxml, cython and so on by the following
commands.

pip i n s t a l l p i l l o w
pip i n s t a l l lxml
pip i n s t a l l cython

A.2. Annotation Tool

The application or tool used for the annotation Air bubble and Brine Channel
is called labelImg, is downloaded and installed from [36]. In figure A.1, the in-
terface of labelImg is shown. labelImg provides a plenty of tools for annotating
objects like drawing rectangle, labelling the objects, editing labelled objects,
saving records in xml format and so on.

In figure A.2, annotated air bubbles in labelImg tool are shown. The red
coloured rectangles are the annotated air bubbles, which are labelled as Bub-
ble. On other images where brine channels are present, also annotated with
name Channel.

A.3. Configuration for Training

The configuration details for training is written in this section.

model {
ssd {
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Figure A.1.: labelImg tool for object annotation

num classes : 2
box coder {
f a s t e r r c n n b o x c o d e r {

y s c a l e : 10 .0
x s c a l e : 10 .0
h e i g h t s c a l e : 5 . 0

w i d t h s c a l e : 5 . 0
}
}

matcher {
argmax matcher {

matched threshold : 0 . 5
unmatched threshold : 0 . 5
i g n o r e t h r e s h o l d s : fa l se
negat ives lower than unmatched : true
f o r c e match f o r each row : true

}
}
s i m i l a r i t y c a l c u l a t o r {

i o u s i m i l a r i t y {
}
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Figure A.2.: Annotated air bubbles in labelImg tool. The pink color rectan-
gle (on middle) shows the manually selected rectangles as an air
bubble. The right side (pink color area) shows the label of the
class.

}
anchor generator {

s sd ancho r gene ra to r {
num layers : 6
min sca l e : 0 . 2
max scale : 0 .95
a s p e c t r a t i o s : 1 . 0
a s p e c t r a t i o s : 2 . 0
a s p e c t r a t i o s : 0 . 5
a s p e c t r a t i o s : 3 . 0
a s p e c t r a t i o s : 0 .3333

}
}
i m a g e r e s i z e r {

f i x e d s h a p e r e s i z e r {
he ight : 200
width : 200

}
}
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box pred i c t o r {
c o n v o l u t i o n a l b o x p r e d i c t o r {

min depth : 0
max depth : 0
n u m l a y e r s b e f o r e p r e d i c t o r : 0
use dropout : fa l se
dropout ke ep probab i l i t y : 0 . 8
k e r n e l s i z e : 1
b o x c o d e s i z e : 4
a p p l y s i g m o i d t o s c o r e s : fa l se
conv hyperparams {

a c t i v a t i o n : RELU 6 ,
r e g u l a r i z e r {

l 2 r e g u l a r i z e r {
weight : 0 .00004

}
}
i n i t i a l i z e r {

t r u n c a t e d n o r m a l i n i t i a l i z e r {
stddev : 0 .03
mean : 0 . 0

}
}
batch norm {

t r a i n : true ,
s c a l e : true ,
c en t e r : true ,
decay : 0 .9997 ,
e p s i l o n : 0 . 001 ,

}
}

}
}
f e a t u r e e x t r a c t o r {

type : ’ s sd mobi l enet v1 ’
min depth : 16
d e p t h m u l t i p l i e r : 1 . 0
conv hyperparams {

a c t i v a t i o n : RELU 6 ,
r e g u l a r i z e r {
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l 2 r e g u l a r i z e r {
weight : 0 .00004

}
}
i n i t i a l i z e r {

t r u n c a t e d n o r m a l i n i t i a l i z e r {
stddev : 0 .03
mean : 0 . 0

}
}
batch norm {

t r a i n : true ,
s c a l e : true ,
c en t e r : true ,
decay : 0 .9997 ,
e p s i l o n : 0 . 001 ,

}
}

}
l o s s {

c l a s s i f i c a t i o n l o s s {
weighted s igmoid {
}

}
l o c a l i z a t i o n l o s s {

weighted smooth l1 {
}

}
hard example miner {

num hard examples : 3000
i o u t h r e s h o l d : 0 .99
l o s s t y p e : CLASSIFICATION
m a x n e g a t i v e s p e r p o s i t i v e : 3
min negat ive s per image : 0

}
c l a s s i f i c a t i o n w e i g h t : 1 . 0
l o c a l i z a t i o n w e i g h t : 1 . 0

}
normal ize loss by num matches : true
p o s t p r o c e s s i n g {
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batch non max suppress ion {
s c o r e t h r e s h o l d : 1e−8
i o u t h r e s h o l d : 0 . 6
m a x d e t e c t i o n s p e r c l a s s : 300
m a x t o t a l d e t e c t i o n s : 500

}
s c o r e c o n v e r t e r : SIGMOID

}
}

}

t r a i n c o n f i g : {
b a t c h s i z e : 12
opt imize r {

rms prop opt imizer : {
l e a r n i n g r a t e : {

e x p o n e n t i a l d e c a y l e a r n i n g r a t e {
i n i t i a l l e a r n i n g r a t e : 0 .0002
decay s t eps : 800720
d e c a y f a c t o r : 0 .95

}
}
momentum optimizer value : 0 . 9
decay : 0 . 9
e p s i l o n : 1 . 0

}
}
f i n e t u n e c h e c k p o i n t : ”/home/m alam/ tenso r f l ow1 /models / r e s ea r ch
/ o b j e c t d e t e c t i o n / s sd mob i l ene t v1 coco 11 06 2017 /model . ckpt ”
f r om det e c t i on checkpo in t : true

#Note : The be low l i n e l i m i t s the t r a i n i n g pr oce s s to 300K
#steps , which we e m p i r i c a l l y found to be s u f f i c i e n t enough
#to t r a i n the p e t s d a t a s e t . This e f f e c t i v e l y byp ass es the
#l e a r n i n g r a t e s c h e d u l e ( the l e a r n i n g r a t e w i l l never
#decay ) . Remove the be low l i n e to t r a i n i n d e f i n i t e l y .

num steps : 300000
data augmentat ion opt ions {

r a n d o m h o r i z o n t a l f l i p {
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}
}
data augmentat ion opt ions {

ssd random crop {
}

}
}

t r a i n i n p u t r e a d e r : {
t f r e c o r d i n p u t r e a d e r {

input path : ”/home/m alam/ tenso r f l ow1 /models / r e s ea r ch
/ o b j e c t d e t e c t i o n / t r a i n . r ecord ”

}
labe l map path : ”/home/m alam/ tenso r f l ow1 /models / r e s ea r ch

/ o b j e c t d e t e c t i o n / t r a i n i n g / labelmap . pbtxt ”
}

e v a l c o n f i g : {
num examples : 2000
# Note : The below l i n e l i m i t s the e v a l u a t i o n p roce ss to 10 e v a l u a t i o n s .
# Remove the be low l i n e to e v a l u a t e i n d e f i n i t e l y .
max evals : 10

}

e v a l i n p u t r e a d e r : {
t f r e c o r d i n p u t r e a d e r {

input path : ”/home/m alam/ tenso r f l ow1 /models / r e s ea r ch
/ o b j e c t d e t e c t i o n / t e s t . r ecord ”
}
labe l map path : ”/home/m alam/ tenso r f l ow1 /models / r e s ea r ch

/ o b j e c t d e t e c t i o n / t r a i n i n g / labelmap . pbtxt ”
s h u f f l e : fa l se
num readers : 1

}
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A.4. Sea Ice Core Information

Core 1 Images of Core 1 (“2015 01 26 MYI.zip”, Date : 26.01.2015) are fol-
lowing (listed from the top of the core to bottom in sequence):

T01 IMG 0959 . jpg depth from Sea Label 0 cm to −05 cm
T02 IMG 0960 . jpg depth from Sea Label −05 cm to −14 cm
T03 IMG 0964 . jpg depth from Sea Label −14 cm to −23 cm
T04 IMG 0969 . jpg depth from Sea Label −23 cm to −34 cm
T05 IMG 0974 . jpg depth from Sea Label −34 cm to −40 cm

Core 2 Images of Core 2 (“2015 01 22 FYI.zip”, Date : 22.01.2015) are fol-
lowing (listed from the top of the core to bottom in sequence):

IMG 0587 T1 . jpg depth from Sea Label 0 cm to −10 cm
IMG 0587 T1−1. jpg depth from Sea Label −10 cm to −20 cm
IMG 0591 T3−1. jpg depth from Sea Label −20 cm to −30 cm
IMG 0596 T4−1. jpg depth from Sea Label −30 cm to −40 cm
IMG 0598 T5−1. jpg depth from Sea Label −40 cm to −50 cm
IMG 0600 T6−1. jpg depth from Sea Label −50 cm to −60 cm
IMG 0605 T7−1. jpg depth from Sea Label −60 cm to −70 cm
IMG 0607 T8−1. jpg depth from Sea Label −70 cm to −80 cm
IMG 0612 T9−1. jpg depth from Sea Label −80 cm to −90 cm

Core 3 Images of Core 3 (“2015 01 26 FYI.zip”, Date : 26.01.2015) are fol-
lowing (listed from the top of the core to bottom in sequence):

1 IMG 0615−1. jpg depth from Sea Label 0 cm to −10 cm
2 IMG 0618−1. jpg depth from Sea Label −10 cm to −20 cm
3 IMG 0621−1. jpg depth from Sea Label −20 cm to −30 cm
4 IMG 0624−1. jpg depth from Sea Label −30 cm to −40 cm
5 IMG 0626−1. jpg depth from Sea Label −40 cm to −50 cm
6 IMG 0628−1. jpg depth from Sea Label −50 cm to −60 cm
7 MG 0631−1. jpg depth from Sea Label −60 cm to −70 cm
8 IMG 0635−1. jpg depth from Sea Label −70 cm to −80 cm
9 IMG 0639−1. jpg depth from Sea Label −80 cm to −90 cm
10 IMG 0643−1. jpg depth from Sea Label −90 cm to −95 cm

Core 4 Images of Core 4 (“2015 03 05 FYI Supersite.zip”, Date : 05.03.2015)
are following (listed from the top of the core to bottom in sequence):
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1 IMG 0661 . jpg depth from Sea Label 0 cm to −10 cm
2 IMG 0665 . jpg depth from Sea Label −10 cm to −20 cm
3 IMG 0667 . jpg depth from Sea Label −20 cm to −30 cm
4 IMG 0672 . jpg depth from Sea Label −30 cm to −40 cm
5 IMG 0670 . jpg depth from Sea Label −40 cm to −50 cm
6 IMG 0672 . jpg depth from Sea Label −50 cm to −60 cm
7 IMG 0674 . jpg depth from Sea Label −60 cm to −70 cm
8 IMG 0677 . jpg depth from Sea Label −70 cm to −80 cm
9 IMG 0679 . jpg depth from Sea Label −80 cm to −90 cm
10 IMG 0681 . jpg depth from Sea Label −90 cm to −100 cm
11 IMG 0683 . jpg depth from Sea Label −100 cm to −110 cm
12 IMG 0685 . jpg depth from Sea Label −110 cm to −115 cm

Core 5 Images of Core 5 (“2015 03 05 Lead.zip”, Date : 05.03.2015) are fol-
lowing (listed from the top of the core to bottom in sequence):

IMG 0687 . jpg depth from Sea Label 0 cm to −10 cm
IMG 0689 . jpg depth from Sea Label −10 cm to −20 cm
IMG 0693 . jpg depth from Sea Label −20 cm to −30 cm
IMG 0695 . jpg depth from Sea Label −30 cm to −40 cm

Core 6 Images of Core 6 (“2015 05 01 thin.zip”, Date : 01.05.2015) are fol-
lowing (listed from the top of the core to bottom in sequence):

1 IMG 0717 . jpg depth from Sea Label 0 cm to −10 cm
2 IMG 0727 . jpg depth from Sea Label −10 cm to −20 cm

Core 7 Images of Core 7 (“2015 05 06 thinice.zip”, Date : 06.05.2015) are
following (listed from the top of the core to bottom in sequence):

1 IMG 1058 . jpg depth from Sea Label 0 cm to −10 cm
2 IMG 1059 . jpg depth from Sea Label −10 cm to −20 cm

Core 8 Images of Core 8 (“2015 05 10 2nd coring site.zip”, Date : 10.05.2015)
are following (listed from the top of the core to bottom in sequence):

1 IMG 1085 . jpg depth from Sea Label 0 cm to −10 cm
2 IMG 1084 . jpg depth from Sea Label −10 cm to −20 cm
3 IMG 1083 . jpg depth from Sea Label −20 cm to −30 cm
4 IMG 1082 . jpg depth from Sea Label −30 cm to −40 cm
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5 IMG 1081 . jpg depth from Sea Label −40 cm to −50 cm
6 IMG 1080 . jpg depth from Sea Label −50 cm to −60 cm
7 IMG 1079 . jpg depth from Sea Label −60 cm to −70 cm
8 IMG 1077 . jpg depth from Sea Label −70 cm to −75 cm

A.5. Hardware Information

System name : e x z e l l n c 0 2 1
Linux v e r s i o n : Ubuntu 1 6 . 0 4 . 1 LTS
Memory (GB) : 128
CPU Informat ion : 2 x I n t e l Xeon E5−2670 , 16∗2.60GHz

Memory Informat ion :
t o t a l used f r e e shared bu f f / cache a v a i l a b l e

Mem: 62G 598M 351M 88M 61G 61G
Swap : 55G 216M 55G

61



B. List of Figures

B. List of Figures

2.1. CNN architecture [3] [14] . . . . . . . . . . . . . . . . . . . . . 10
2.2. Distribution of pixels in image shown on a large scale to represent

pixel values [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3. Initial steps of convolution, a 3×3 filter (b) applied to an image

matrix (a) results in (c) . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Convolution with Stride=2, filter (red color) moves by 2 pixels

after each step . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. Zero padding; zero columns (light blue) are added at the edge

of the image matrix (blue) . . . . . . . . . . . . . . . . . . . . . 13
2.6. Max Pooling and Average Pooling . . . . . . . . . . . . . . . . 13
2.7. Output layer. The weighted sum of the input features is fed

to the Activation function, which determines the class where it
belongs to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8. SSD model architecture [27]. SSD adds 6 more auxiliary convo-
lution layers after the VGG-16 [11]. . . . . . . . . . . . . . . . . 16

3.1. Ice core images arranged from top of the core(provided by N-
ICE 2015 campaign [22]. Centimeter scale is shown at the left.
The 1st, 3rd and 5th image of the ice core are shown on large
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Some typical air bubble samples . . . . . . . . . . . . . . . . . 22
3.3. Some typical brine channel samples . . . . . . . . . . . . . . . . 22
3.4. Some typical air bubbles in the Arctic sea ice (blue rectangle) . 23
3.5. Training steps at the beginning of training. Calculated loss (at

step 1=18.5128) is gradually decreasing (at step 26=13.5814). . 25
3.6. Training steps at the end of training. Calculated loss is 2.3890

at final step (at step 300000). . . . . . . . . . . . . . . . . . . . 25
3.7. Classification loss. The curve (orange color) represents the con-

tinuous reduction of classification loss over the training steps. . 26
3.8. Localization loss. The curve (orange color) represents the con-

tinuous reduction of localization loss over the training steps. . . 26
3.9. Total loss curve; sum of the classification loss and localization loss 27

62



B. List of Figures

3.10. 1st section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:5cm . . . . . . . . . . . . . . . . . . . . . . 28

3.11. 1st section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:5cm; analysed on 18.06.2019) . . . . . . . . 28

3.12. 2nd section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) before air bubble and channel detection;
width:10cm; height:9cm . . . . . . . . . . . . . . . . . . . . . . 29

3.13. 2nd section from top of multiyear ice core 1 obtained from N-ICE
2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:9cm . . . . . . . . . . . . . . . . . . . . . . 29

3.14. 3rd section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detec-
tion; width:10cm; height:9cm . . . . . . . . . . . . . . . . . . . 30

3.15. 3rd section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:9cm . . . . . . . . . . . . . . . . . . . . . . 30

3.16. 4th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detec-
tion; width:10cm; height:11cm . . . . . . . . . . . . . . . . . . . 31

3.17. 4th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after bubble and channel detection;
width:10cm; height:11cm . . . . . . . . . . . . . . . . . . . . . . 31

3.18. 5th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) before air bubble and channel detec-
tion; width:10cm; height:6cm . . . . . . . . . . . . . . . . . . . 32

3.19. 5th section from top of multiyear ice core 1 obtained from N-
ICE2015 Campaign (A.4) after air bubble and channel detection;
width:10cm; height:6cm . . . . . . . . . . . . . . . . . . . . . . 32

4.1. Air bubble sample image (left) and binary thresholded image
(right), Threshold value (T) = mean pixel value . . . . . . . . . 34

4.2. Contour approximation applied on binary thresholded image,
detected contours are marked by 1,2,3 and 4 . . . . . . . . . . . 35

4.3. Binary thresholded image (left), binary inverted image (mid-
dle)(detected contour marked by 1), cavity filled image (right) . 35

4.4. Contour approximation applied on air bubble rectangle . . . . 36
4.5. Contour approximation applied on partial-bubble rectangle . . 36

63



B. List of Figures

4.6. Area of the detected air bubbles in 1st thick section image of
ice core 1 [A.4], Depth=0-5 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble. . 38

4.7. Area of the detected air bubbles in 2nd thick section image of
Core 1 [A.4], Depth=5-14 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble. . 39

4.8. Area of the detected air bubbles in 3rd thick section image of
Core 1 [A.4], Depth=14-23 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble. . 39

4.9. Area of the detected air bubbles in 4th thick section image of
Core 1 [A.4], Depth=23-34 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble. . 40

4.10. Area of the detected air bubbles in 5th thick section image of
Core 1 [A.4], Depth=34-40 centimetre from the top of the core,
x-axis represents the arbitrary sample or detected air bubble i,
y-axis represents the area of the corresponding ith air bubble. . 40

4.11. Circularity of detected air bubbles in 1st thick section of ice core
1 [A.4](sorted from minimum to maximum), x-axis represents
the arbitrary detected air bubble sample i, y-axis represents the
circularity of the corresponding ith air bubble. . . . . . . . . . 41

4.12. Histogram and PDF with respect to area of air bubbles detected
in 1st thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0263 [A.4] . . 42

4.13. Histogram and PDF with respect to area of air bubbles detected
in 2nd thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0837 [A.4] . . 42

4.14. Histogram and PDF with respect to area of air bubbles detected
in 3rd thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0421 [A.4] . . 43

4.15. Histogram and PDF with respect to area of air bubbles detected
in 4th thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0266 [A.4] . . 43

4.16. Histogram and PDF with respect to area of air bubbles detected
in 5th thick section of sea ice core 1, Histogram drawn in blue
color and PDF drawn in orange color, Bin size: 0.0134 [A.4] . . 44

64



B. List of Figures

4.17. Number of air bubbles with area above 0.5 mm2 in Core 1 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.18. Number of air bubbles with area above 0.5 mm2 in Core 2 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.19. Number of air bubbles with area above 0.5 mm2 in Core 3 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.20. Number of air bubbles with area above 0.5 mm2 in Core 4 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.21. Number of air bubbles with area above 0.5 mm2 in Core 8 (A.4),
x-axis represents the depth of the core in centimeter, y-axis rep-
resents the amount of air bubbles found in the mentioned depth
of the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1. labelImg tool for object annotation . . . . . . . . . . . . . . . . 53
A.2. Annotated air bubbles in labelImg tool. The pink color rectangle

(on middle) shows the manually selected rectangles as an air
bubble. The right side (pink color area) shows the label of the
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

65



C. List of Tables

C. List of Tables

3.1. Result of air bubble detector . . . . . . . . . . . . . . . . . . . 33

4.1. Rectangle area, air bubble contour area, perimeter of 7 different
cases shown in figure 4.4 . . . . . . . . . . . . . . . . . . . . . . 37

4.2. Calculated mean and Standard Deviation of circularity for im-
ages of Core 1 [A.4] . . . . . . . . . . . . . . . . . . . . . . . . . 41

66



D. Bibliography

D. Bibliography

[1] Architecture of Convolutional Neural Networks (CNNs) demystified.
https://www.analyticsvidhya.com/blog/2017/06/architecture-

of-convolutional-neural-networks-simplified-demystified/. Ac-
cessed: 2019-03-14.

[2] Artificial Neuron Networks(Basics)—Introduction to Neural Networks.
https://becominghuman.ai/artificial-neuron-networks-basics-

introduction-to-neural-networks-3082f1dcca8c. Accessed: 2019-
03-14.

[3] CNN Architecture. https://res.mdpi.com/entropy/entropy-19-

00242/article_deploy/html/images/entropy-19-00242-g001.png.
Accessed: 2019-04-22.

[4] Contours : Getting Started. https://docs.opencv.org/3.4/d4/d73/

tutorial_py_contours_begin.html. Accessed: 2019-04-20.

[5] Faster R-CNN Explained. https://medium.com/@smallfishbigsea/

faster-r-cnn-explained-864d4fb7e3f8. Accessed: 2019-05-18.

[6] How to Calculate Circularity. https://sciencing.com/calculate-

circularity-5138742.html. Accessed: 2019-04-22.

[7] How To Train an Object Detection Classifier for Multiple Ob-
jects Using TensorFlow. https://github.com/EdjeElectronics/

TensorFlow - Object - Detection - API - Tutorial - Train - Multiple -

Objects-Windows-10. Accessed: 2019-04-14.

[8] Introduction to Computer Vision. http://ai.stanford.edu/~syyeung/

cvweb/tutorial1.html. Accessed: 2019-05-12.

[9] Neocognitron. https://en.wikipedia.org/wiki/Neocognitron. Acces-
sed: 2019-03-14.

[10] Ratio of Training data and Test Data. https://www.researchgate.

net/post/Is_there_an_ideal_ratio_between_a_training_set_and_

67

https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/
https://www.analyticsvidhya.com/blog/2017/06/architecture-of-convolutional-neural-networks-simplified-demystified/
https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural -networks-3082f1dcca8c
https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural -networks-3082f1dcca8c
https://res.mdpi.com/entropy/entropy-19-00242/article_deploy/html/images/entropy-19-00242-g001.png
https://res.mdpi.com/entropy/entropy-19-00242/article_deploy/html/images/entropy-19-00242-g001.png
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8
https://medium.com/@smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8
https://sciencing.com/calculate-circularity-5138742.html
https://sciencing.com/calculate-circularity-5138742.html
https://github.com/EdjeElectronics/TensorFlow-Objec t-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
https://github.com/EdjeElectronics/TensorFlow-Objec t-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
https://github.com/EdjeElectronics/TensorFlow-Objec t-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10
http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html
http://ai.stanford.edu/~syyeung/cvweb/tutorial1.html
https://en.wikipedia.org/wiki/Neocognitron
https://www.researchgate.net/post/Is_there_an_ideal_ratio_between_a_training_set_and_validation_set_Which_trade-off_would_you_suggest
https://www.researchgate.net/post/Is_there_an_ideal_ratio_between_a_training_set_and_validation_set_Which_trade-off_would_you_suggest
https://www.researchgate.net/post/Is_there_an_ideal_ratio_between_a_training_set_and_validation_set_Which_trade-off_would_you_suggest
https://www.researchgate.net/post/Is_there_an_ideal_ratio_between_a_training_set_and_validation_set_Which_trade-off_would_you_suggest


D. Bibliography

validation_set_Which_trade-off_would_you_suggest. Accessed:
2019-05-14.

[11] SSD object detection. https://medium.com/@jonathan_hui/ssd-

object- detection- single- shot- multibox- detector- for- real-

time-processing-9bd8deac0e06. Accessed: 2019-05-18.

[12] Training Data and Test Data. https://www.quora.com/What-is-the-

difference-between-training-data-and-testing-data. Accessed:
2019-05-14.

[13] Understanding Hyperparameters Optimization in Deep Learning Mo-
dels: Concepts and Tools. https://towardsdatascience.com/

understanding-hyperparameters-optimization-in-deep-learning-

models-concepts-and-tools-357002a3338a. Accessed: 2019-05-13.

[14] Albelwi, Saleh, Mahmood und Ausif: A framework for designing the archi-
tectures of deep convolutional neural networks. Entropy, 19(6):242, 2017.
doi = 10.3390/e19060242.

[15] Aljburi, Dalya: Probability Density Function ( PDF ), Juli 2016. doi =
10.13140/RG.2.1.1688.9843.

[16] Bhandare, Ashwin, Bhide, Maithili, Gokhale, Pranav, Chandavarkar und
Rohan: Applications of convolutional neural networks. International Jour-
nal of Computer Science and Information Technologies, 7(5):2206–2215,
2016.

[17] Cao, Zheng, Principe, Jose C, Ouyang, Bing, Dalgleish, Fraser, Vuoren-
koski und Anni: Marine animal classification using combined CNN and
hand-designed image features. In: OCEANS 2015-MTS/IEEE Washing-
ton. IEEE, 2015. pages=1–6. doi= 10.23919/OCEANS.2015.7404375.

[18] Davis, Jesse und Mark Goadrich: The relationship between Precision-Recall
and ROC curves. In: Proceedings of the 23rd international conference on
Machine learning. ACM, 2006. pages=233–240. doi = 10.1145/1143844.

1143874.

[19] Eicken, Hajo, Rolf Gradinger, Maya Salganek, Kunio Shirasawa, Don
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