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Abstract

Melt ponds are pools of water on Arctic sea ice that play a crucial role in the sum-

mer heat budget. Accurate quantitative analysis of melt pond distribution is essential

for improving climate model predictions. High-resolution thermal infrared imagery ac-

quired from aircraft can be used to validate low-resolution satellite products and extend

existing tools to derive melt pond characteristics. This requires a method to classify the

images into distinct surface types. The aim of this thesis is to develop a segmentation

model to separate helicopter-borne thermal infrared images into melt pond, sea ice, and

ocean classes. To address this task, we explored the application of a pre-trained U-net,

a deep convolutional neural network. Time-consuming annotation limited the availabil-

ity of labeled training data, which affected the generalization ability of our model and

challenged robust evaluation. Our final model cannot be readily employed as a stan-

dalone solution. Nevertheless, it serves as a foundation for future improvements and

can be used as a tool to annotate more data. In addition, we were able to gain insight

into the effectiveness of different regularization techniques that can inform future stud-

ies in this domain. The code of this work can be accessed in our GitHub repository

(https://github.com/marlens123/ponds).

https://github.com/marlens123/ponds
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Chapter 1

Introduction and Context

Studies show that the Arctic is warming up to four times faster than the rest of the Earth

(Rantanen et al., 2022). Sea ice decline has increased in recent years (Meredith et al.,

2019), and a seasonally ice-free Arctic is predicted by the middle of this century (Notz

and Stroeve, 2018). Impacts on our global climate system, such as changes in jet streams

or increased cooling of the mid-latitudes, are being discussed (Francis and Vavrus, 2015;

Cohen et al., 2020). Consequences for Arctic people and the shipping industry are already

evident (Hovelsrud et al., 2011; Eguíluz et al., 2016).

1.1 Melt Ponds and the Arctic Heat Budget

Strong seasonal changes of Arctic surface structures occur in summer, when temperatures

rise close to or above zero degrees. The melting of sea ice and snow leads to the formation

of melt ponds, pools of water that collect on areas of lower topography. They begin to

appear around the end of May, can cover up to about 60-80% of the sea ice area at the

peak of melt, and refreeze in August and September (Eicken et al., 2004; Eicken et al.,

2002; Perovich et al., 2002). Melt ponds have a strong influence on the Arctic energy

budget. Due to their darker appearance, they absorb significantly more sunlight than

reflective sea ice and snow (Fetterer and Untersteiner, 1998; Grenfell and Maykut, 1977;

Grenfell and Perovich, 1984; Grenfell and Perovich, 2004; Nicolaus et al., 2010). This

causes the surrounding areas to warm up, leading to further melt and rapidly changing

surface properties (Polashenski, Perovich, and Courville, 2012a).

The impact of melt ponds on the Arctic climate system depends on their spatial extent

(Eicken et al., 2004). Melt pond fraction (MPF), the fraction of sea ice surface covered by

ponds, is a crucial parameter for models that predict Arctic climate evolution, but has not
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FIGURE 1.1: Various melt pond shapes depicted in VIS imagery. Yellow
rectangles are examples of submerged ice. Location: Fram Strait region.
Date: July 18, 2022 (Kanzow, 2023, AWI PS131 02). VIS Images are pro-

vided by Lena Buth, Alfred Wegener Institute.

been sufficiently integrated in recent models (Flocco, Feltham, and Turner, 2010; Flocco

et al., 2012; Hunke, Hebert, and Lecomte, 2013; Polashenski, Perovich, and Courville,

2012b; Schröder et al., 2014). The development of methods to accurately retrieve and

analyze MPF is an ongoing research area.

1.2 Methodology to Observe Melt Ponds

Accessing MPF is hampered by the remoteness of the Arctic Ocean. For a comprehensive

analysis, a combination of different data sources is needed. Existing methods observe the

Arctic from different platforms and with different sensors.

1.2.1 Spatial Scale

In situ measurements collect melt pond data directly from the location of interest (Landy

et al., 2014; Polashenski, Perovich, and Courville, 2012b; Eicken et al., 2004; Polashenski

et al., 2017). These methods are needed to understand the underlying processes, but

are rare, resource intensive, and not suited to represent spatially and temporally varying

MPF for the entire Arctic.

Remote sensing techniques provide data from a distance, making it possible to ob-

serve a larger area 1. Satellites are a promising method in the long term because they can

cover major parts of the Arctic on a regular basis. To date, most MPF retrievals have used

low- and medium-resolution satellite imagery, e. g., MODIS with a spatial resolution of

250m to 1km (Fuchs, 2023a; Rösel and Kaleschke, 2011). This does not resolve individual

ponds, making accurate acquisition a challenge (Stroeve et al., 2021; Rösel, Kaleschke,

1For a comprehensive introduction to remote sensing, see Campbell and Wynne, 2011



1.2. Methodology to Observe Melt Ponds 3

and Birnbaum, 2012). High-resolution satellite products are available (Niehaus et al.,

2023), but still limited in spatial coverage (Wright and Polashenski, 2020).

In conjunction with satellite observations and ground-based measurements, airborne

campaigns can obtain MPF for specific areas with high resolution. Airborne measure-

ments have the advantage of flexibility, as they can be targeted to areas of interest and

avoid cloud cover. They can be used for the validation of satellite retrievals, see, e. g.,

Niehaus et al., 2023 and Istomina et al., 2015.

1.2.2 Sensors

Depending on the sensor used, remote sensing techniques record radiation at different

frequencies.

Visual imagery (VIS) is often used to derive MPF (e. g., Lu et al., 2010; Perovich,

Tucker III, and Ligett, 2002; Niehaus et al., 2023; Wright and Polashenski, 2018). VIS

captures the reflected amount of sunlight in three channels (usually RGB) and indicates

melt ponds by their blueish to dark gray color (Perovich et al., 1996, Figure 1.1). A draw-

back of VIS imagery is its dependence on sunlight and sensitivity to different lighting

conditions. Also, VIS is affected by cloud cover, which can be high in summer when

MPF is at its peak (Perovich, Tucker III, and Ligett, 2002).

Microwave measurements are independent of sunlight and clouds. Scharien et al.,

2007 and Kim et al., 2013 used high-resolution synthetic aperture radar (SAR) data for

MPF retrieval. However, difficulties in detecting small melt ponds were reported (Kim

et al., 2013). Apart from SAR, microwave technology is hampered by relatively low reso-

lution.

Thermal infrared (TIR) imagery measures the emissivity of thermal radiation with

wavelengths around 10µm. Like VIS, TIR is affected by cloud cover, but can be used in the

absence of daylight. Thielke et al., 2023 was able to show that infrared imagery is capable

of detecting winter sea ice surface features. Figure 1.2 shows the potential to identify

summer melt ponds. By capturing the surface temperature, TIR allows to address new

research questions about the thermal properties of melt ponds and can contribute to a

better understanding of the summer heat budget.
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FIGURE 1.2: Ice floes with melt ponds depicted in TIR imagery. Images are
pseudo-colored for visibility reasons. Yellow corresponds to warm, blue
to cold temperatures, as shown on the right (surface temperatures (TS) in

Kelvin). Location: Fram Strait region. Date: July 18, 2022.

So far, TIR imagery is rarely used in MPF retrieval. At present, only low-resolution

TIR satellite products are available, which need to be validated by helicopter measure-

ments (Thielke et al., 2022). Methods are needed to separate these data into different

surface types.

This thesis investigates the segmentation of helicopter-borne TIR images into different

surface classes. We follow the surface type definition of Wright and Polashenski, 2018:

(1) melt ponds - surfaces where liquid water covers ice. This includes ponds that are

completely embedded in ice floes and submerged ice at the edges of floes (Figure 1.1), (2)

sea ice and snow, and (3) ocean - open bodies of water that are not covered by ice.

The remainder of this thesis is organized as follows. In Chapter 2 we review related

work and present the method that we intend to use. In Chapter 3 we specify our ex-

perimental setting. In Chapter 4 we provide and interpret our results. In Chapter 5 we

summarize our findings and give directions for future work.
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Chapter 2

Background

2.1 Related Work and Requirements for TIR Segmentation

Semantic segmentation is the task of assigning a class value to each pixel of an image.

Existing methods in the field of melt pond retrieval often use traditional image processing

techniques and are mainly divided into two categories: (1) pixel-based and (2) object-

based segmentation.

Pixel-based methods rely on single pixel values. Many works on VIS imagery are

based on thresholding approaches (Lu et al., 2010; Perovich, Tucker III, and Ligett, 2002;

Tschudi, Curry, and Maslanik, 2001; Krumpen et al., 2011; Inoue, Curry, and Maslanik,

2008; Huang et al., 2016), where a threshold is set to separate instances below and above

that value. Other approaches have used pixel-wise classification with supervised meth-

ods such as random forests (Fuchs, 2023b).

Object-based segmentation aims to group multiple pixels into meaningful objects and

can take into account both spatial and spectral features. For example, Miao et al., 2015

and Wright and Polashenski, 2018 developed object-based algorithms that first separate

objects from images by edge detection and classify them according to manually defined

features such as texture and color.

For TIR imagery, spatially and temporally varying temperatures place special de-

mands on the segmentation algorithm that cannot be met by traditional methods. Due

to its salinity, ocean water has a freezing temperature of -1.8 degrees Celsius. This means

that in summer, sea ice can be warmer or colder than the surrounding ocean (Figure 1.2).

Surface types cannot be predicted from pixel brightness alone, and single pixel-based
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FIGURE 2.1: Edge-based segmentation has difficulties to distinguish sub-
merged ice from ocean (blue rectangles) and cannot detect melt ponds with
small temperature changes (green rectangles). For this example, a Scharr
filter was used (red outlines, Scharr, 2000). Yellow corresponds to warm,
gray/blue to cold temperatures (right image). We did not plot a colorbar
because the image was edited for visibility reasons. Location: Fram Strait

region. Date: July 18, 2022 (Kanzow, 2023, AWI PS131 02).

methods are not applicable. Considering object-based segmentation, we observed that

object boundaries in TIR are challenged by smooth temperature transitions or no transi-

tions at all, as in the case of submerged ice and ocean (Figure 2.1).

What is needed for TIR segmentation is a more general method that relies on vari-

ous attributes such as shape and size simultaneously. Melt pond shapes can range from

single circular shapes to complex interconnected networks (Hohenegger et al., 2012; Po-

lashenski, Perovich, and Courville, 2012a) and sizes can range from square centimeters

to square kilometers (Perovich, Tucker III, and Ligett, 2002). We considered to use a deep

learning-based approach that is capable of efficiently extracting multiple features.

Only a few studies have applied deep learning to melt pond segmentation. This may

be because in VIS imagery, surface types are relatively easy to distinguish by simple fea-

tures, and thus complex methods are not needed. Lee et al., 2020 trained a multilayer

perceptron for pixel-wise classification of optical satellite imagery. Panchi, Kim, and

Bhattacharyya, 2021 used a neural network ensemble to segment ship-based optical im-

agery into ice and surface features, and Sudakow et al., 2022 developed a modified U-net

to retrieve melt ponds from airborne optical images.
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2.2 Feature Extraction with Convolutional Neural Networks

In recent years, major improvements in image classification and segmentation have been

achieved with convolutional neural networks (CNN; O’Shea and Nash, 2015; Krizhevsky,

Sutskever, and Hinton, 2012). CNNs are supervised deep learning methods that auto-

matically learn spatial features from images at different levels of abstraction. CNNs can

capture local features and spatial context simultaneously, making them promising for the

task at hand. For example, a CNN might recognize that a circular shape alone does not

necessarily indicate a melt pond, but its embedding in sea ice suggests that it is a pond

rather than an ice floe. In addition, CNNs take over the task of thorough manual feature

engineering that was necessary for many of the works mentioned in Section 2.1.

The main components of CNNs are:

• convolutional layers that extract features by sliding a filter or kernel across the im-

age dimensions. They are typically followed by a rectified linear unit (ReLU) acti-

vation function;

• pooling layers that are used to reduce the spatial dimensions of the input data by

downsampling.

2.3 Semantic Segmentation with U-net

U-net is a segmentation architecture that was originally introduced by Ronneberger et

al. in 2015 (Ronneberger, Fischer, and Brox, 2015). U-net uses a CNN as an encoder for

feature extraction. This is combined with a decoder path that maps the features learned

at different levels to the pixel space (Figure 2.2). This way, the compressed feature rep-

resentation is restored to a larger image size. In addition to CNN components, U-net

uses:

• upsampling, which, in contrast to pooling, is used to increase the spatial resolution

of the feature maps. This can be done through upsampling layers or transposed

convolutions, where in this work, we used upsampling layers;
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FIGURE 2.2: Basic U-net architecture. Each box represents a multi-channel
feature map. The white boxes correspond to copied feature maps. Con-
tracting path (encoder) and expanding path (decoder) form a U-shaped

network. Skip connections provide localization information.

• concatenations, which are used to combine the upsampled feature maps with cor-

responding features from the encoder path at different stages. This allows the de-

coder to access high-resolution information that would otherwise be lost during

downsampling.

For more information on the original architecture, see Ronneberger, Fischer, and Brox,

2015.

Although initially developed for the purpose of biomedical image segmentation, U-

net has been the primary architecture used for remote sensing tasks (Hoeser, Bachofer,

and Kuenzer, 2020). It won the DSTL Satellite Imagery Feature Detection challenge on

Kaggle (Benjamin, 2016; Iglovikov, Mushinskiy, and Osin, 2017). Skip connections allow

for precise location restoration, which is useful for small melt pond features. Its sim-

ple structure is easily modifiable, providing potential for task-specific refinements in the

future.
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2.4 Overfitting

A drawback of CNN-based architectures is their dependence on big data due to a large

number of trainable parameters. Small data leads to the problem of overfitting: The

network learns a function with high variance, so that it is not able to generalize on unseen

samples.

This is a challenge for Arctic remote sensing tasks where data acquisition is lim-

ited. Even more demanding for the segmentation task at hand is the difficult and time-

consuming annotation process (Section 3.2).

Still, training U-net with small data can be successful (Iglovikov, Mushinskiy, and

Osin, 2017; Ronneberger, Fischer, and Brox, 2015). Regularization methods can help to

mitigate overfitting. In the following, we present some of the techniques investigated in

this thesis.

2.4.1 Augmentation

Augmentation has been proven to be one of the most powerful techniques to combat

overfitting. It refers to synthetically modifying training data prior to model training by

applying image transformations. In this way, the size of the dataset can be increased and

more information added to the input. For example, variations in altitude, atmospheric ef-

fects, or seasonal and regional changes can be mimicked. For a comprehensive overview

of the most popular augmentation techniques, see Shorten and Khoshgoftaar, 2019.

So far, there is no consensus on the best increase in dataset size through augmenta-

tion, nor on the ideal number of transformations to be applied to an image (Shorten and

Khoshgoftaar, 2019; Wagner, Eltner, and Maas, 2023). Which augmentation techniques

work best is highly task dependent.

2.4.2 Transfer Learning

Transfer learning (Weiss, Khoshgoftaar, and Wang, 2016; Shao, Zhu, and Li, 2014) ad-

dresses overfitting by using a pre-trained model that is usually trained on a large-scale

classification task. The idea is that the features learned from a large dataset are gen-

eral enough to be transferable to different tasks. For very small datasets, a pre-trained
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network can improve the generalization ability of the model, as it has seen different ex-

amples. The pre-trained model can be used as a fixed feature extractor, or fine-tuned for

the task at hand.

Often, ImageNet is used as pre-training dataset. ImageNet (Deng et al., 2009) is a

benchmark computer vision dataset that comprises over 14+ million labeled images with

1000 classes. It contains RGB images of complex everyday objects such as tables, chairs,

cars, and cats. This makes it very different from Arctic TIR images, which consist of

homogeneous surface structures contained in a single color channel and captured from

an overhead perspective. However, previous work has shown that pre-training on Ima-

geNet is beneficial even in cases where the secondary task is significantly different from

the primary task (Hu et al., 2015; Yosinski et al., 2014; Lima and Marfurt, 2019; Esteva

et al., 2017).

2.4.3 Dropout

Dropout is a regularization technique applied during model training. It randomly sets a

fraction of network units to zero during learning, which prevents the model from relying

too much on specific features (Srivastava et al., 2014).

In this thesis, we aim to use U-net to semantically segment melt ponds, sea ice, and

ocean classes from TIR imagery.

We divide our experimental work into two parts. (1) Model selection, where we com-

pare different hyperparameters settings in order to optimize the model configuration,

and (2) final model construction, where we build and evaluate our final model. We refer

to hyperparameters as external choices that can be made for the training configuration,

namely: patch size, loss function, whether to use dropout layers, the pre-training strat-

egy, augmentation techniques (the transformations applied to our images), and augmen-

tation design (whether to use on-the-fly or offline augmentation). More information on

the hyperparameters follows in the next chapter.
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Chapter 3

Methodology

In this chapter, we exhibit our experimental setup for constructing a U-net that segments

TIR imagery into different surface classes.

It contains a description of the dataset (Section 3.1), the annotation procedure (Section

3.2), and our model architecture (Section 3.3). We present preprocessing steps (Section

3.4), the hyperparameters under optimization (Section 3.5), the training and prediction

procedure (Section 3.6), and evaluation techniques (Section 3.7).

3.1 Data

We used helicopter-borne TIR imagery acquired with an Infratec Vario-CAM HD head

680 camera during the PS131 ATlantic WAter pathways to the ICE campaign (ATWAICE;

Kanzow, 2023). A total of 16 flights were conducted at an altitude of about 300m in July

and early August 2022, corresponding to the season of peak pond coverage (Perovich,

Tucker III, and Ligett, 2002). The geographic area of study was the marginal ice zone of

the Fram Strait region (Figure 3.1).

We selected training images from Flight 9, which was performed on July 18, 2022.

This was the only choice where no clouds or mist were reported. Out of 4989 images, we

selected 10 for labeling. We tried to include images with features of different sizes and

shapes, and with good visibility to ensure labeling accuracy.

For the small amount of training data that we were able to annotate, Flight 9 could

provide a sufficient variety of images. For testing purposes, we included Flight 16 with

mostly sunny conditions.
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FIGURE 3.1: Route of PS131. Image Source: Kanzow, 2023.
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Data was obtained in NetCDF4 file format with 640 x 480 pixels per image. Each

image records the broadband infrared radiation (7.5µm to 14µm) at roughly 1m resolu-

tion. It is likely that image gradient and drift correction was applied prior to this study

(Thielke et al., 2022), although it was not possible to fully trace these steps. The images

were not georeferenced in advance, which introduces geometric distortions, especially at

the image boundaries. We colormapped the images and saved them in PNG format us-

ing matplotlib (Hunter, 2007) with colormap ’cividis’ for inspection and ’gray’ for further

processing.

For more information on the infrared camera and the cruise, see Thielke et al., 2022

and Kanzow, 2023.

3.2 Annotation

We labeled each selected image pixel-wise into melt pond, sea ice, and ocean. Small fea-

tures and smooth boundaries challenged our ability to discriminate during annotation.

We approached this problem using a variety of methods, which we present in this section.

A detailed description of the annotation process can be found in Appendix A.

Prior to annotation, we created a binary edge map to provide a starting point for

manual correction (Figure 3.2). This was done using a Scharr operator (Scharr, 2000). We

chose GIMP 2.10 (The GIMP Development Team, 2019) as annotation software because it

allowed us to work with both the image and the edge map, and provided the tools needed

for fine-grained labeling. Other popular software such as LabelMe were not considered

because they only allow polygon-based annotation, which is not suitable for small and

irregularly shaped ponds.

For annotation purposes, we resized the image to 3210 x 2345 pixels per image. We

found this to be more convenient for the labeling process, as small features were found

to be hard to distinguish at low resolution. However, some accuracy may be lost in the

final annotation masks due to interpolation.

In parallel with annotation, we inspected VIS images recorded at the same second

to reduce annotation uncertainty. This was particularly important for submerged ice,

which was difficult to identify from TIR imagery alone. The VIS images were taken with

a Canon EOS-1D Mark III 14mm camera with 3908 x 2600 pixels per image and were
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FIGURE 3.2: Edge map (middle) used as a starting point for labeling with
corresponding TIR (left, clipped to temperature values between 273 and
276 Kelvin for visibility reasons) and VIS image (right). Location: Fram

Strait region. Date: July 18, 2022 (Kanzow, 2023, AWI PS131 02).

provided by Lena Buth from the Alfred Wegener Institute. They show a slightly larger

surface area than the corresponding TIR images (Figure 3.2). To further speed up the

process, we tried to align the corresponding images. Due to distortions, this was not

possible with simple means and we postponed this task to future work.

We used the following criteria to annotate an object as melt pond:

• features that were characterized by a temperature change in TIR, detected by the

edge detection algorithm, and identified as melt ponds in VIS;

• features at the edges of ice floes that were identified as submerged ice in VIS.

We observed that the VIS images show more ponds than can be detected for the same

area in TIR. Some ponds in TIR are characterized by only small temperature changes with

smooth boundaries. Their shape often did not match that shown in VIS, and we decided

not to annotate these cases. Thus, an underrepresentation of melt ponds in the training

set compared to ponds in the VIS region is likely. We discuss this further in Section 4.2.2.

For each image, the annotation process took several hours. Thus, 10 images was the

maximum number of images that could be labeled for this work.

3.3 Model Architecture

For our U-net architecture, we used the publicly available Segmentation Models library

(Iakubovskii, 2019) based on Keras (Chollet et al., 2015) and TensorFlow (Abadi et al.,

2016). We selected this implementation because of its high-level functionality and the

ease of using pre-trained models. Changes that we implemented are reported in the
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README.md of our GitHub repository 1. Below we list some main characteristics of our

U-net implementation.

• Backbone: To be able to use pre-trained weights from the ImageNet classification

task, we constructed a backboned U-net with a pre-existing CNN architecture as

the encoder. We chose ResNet34 as our backbone because it is commonly used for

remote sensing tasks (Hoeser, Bachofer, and Kuenzer, 2020). ResNet34 is a popular

classification architecture that uses residual connections to make training more ef-

ficient (He et al., 2015a). It is composed of 34 layers organized in residual blocks,

which allows to learn only the differences (residuals) between the input and the de-

sired output. For incorporation into U-net, the fully connected layers of the ResNet

are removed and connected to a decoder.

• Batch normalization: Batch normalization layers (Ioffe and Szegedy, 2015) are em-

bedded in the encoder and decoder after each convolution and before activation.

This is to normalize batch activations for convergence acceleration.

• Zero padding is used to be able to predict border pixels and restore the original

image size. Inaccuracies in the border regions due to missing context are addressed

in Section 4.3.

Our final model contains over 24 million trainable parameters. We adjusted the input

size of the model to fit our specific image size. The final layer uses a softmax activation

function to obtain a probability distribution over classes. By adding an argmax operation,

each pixel is assigned the most likely class value.

Figure 3.3 shows our final network architecture. For more information on the model

used, see our GitHub repository (summary/model_dropout.png) and Iakubovskii, 2019.

3.4 Data Preprocessing

Initial attempts to train with temperature pixel values resulted in poor performance. For

our final setting, we loaded the colormapped PNG images with pixel values ranging from

0-255.
1https://github.com/marlens123/ponds

https://github.com/marlens123/ponds
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FIGURE 3.3: Model architecture used in our work. The encoder (left) con-
sists of a ResNet34 architecture. Skip connections transfer information
from different layers in the encoder to the decoder (right). Batch normal-

ization, zero padding and max pooling layers are not shown.
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FIGURE 3.4: Class-wise pixel distribution in the dataset used for training.

We center-cropped the images to a size of 480 x 480 pixels to eliminate major distor-

tions at the image boundaries. Since our backbone architecture is designed for 3-channel

input, we repeated the last dimension 3 times. The data type was converted from int32 to

float32 to increase precision for training. We followed the implementation used and did

not apply any further preprocessing steps.

We loaded the annotated masks as grayscale images and converted pixel values to 0, 1

and 2, where 0 encodes the melt pond class, 1 encodes the sea ice class, and 2 encodes the

ocean class. We resized the masks back from 3210 x 2345 to 640 x 480 and center-cropped

them to a size of 480 x 480.

Figure 3.4 shows the class-wise percentage of pixels in the training dataset. The

dataset is very unbalanced, which we account for in Section 3.5.2.

Our preprocessing steps are located in prepare_data.py and utils/data.py. The

entire dataset can be inspected in Appendix A.

3.5 Hyperparameters

3.5.1 Patch Size

Prior work has found that for small datasets, performance can be improved by cropping

the images into smaller patches, which allows for a larger batch size (Iglovikov, Mushin-

skiy, and Osin, 2017). In addition, a smaller patch size may help the model to focus on the



18 Chapter 3. Methodology

spatial context in the immediate vicinity of melt ponds, which may be more important

for detection rather than the larger surrounding.

On the other hand, a patch size that is too small may not capture enough context for

correct classification, e. g., embedding in pond networks may be important for separating

melt pond and ocean classes.

We investigated this trade-off by testing five different patch sizes. We started with

a patch size of 32 x 32, as this was large enough to fully capture individual ponds. The

model input size was limited by the implementation used to be divisible by 32 (Iglovikov,

Mushinskiy, and Osin, 2017). For smaller patch sizes, we used larger batch sizes. Sum-

maries of the respective dataset sizes and image contents can be found in Table 3.1. Ex-

ample patches are shown in Appendix A.

We created the patches with a sliding window approach. For the 256 x 256 patch size,

overlapping was inevitable when extracting multiple patches. For the other sizes, we

increased the step size to avoid overlap. We performed patch extraction after the dataset

split to prevent information leakage between the train and test sets in the case of overlap.

We applied patch extraction to both the training and test sets in the same way.

3.5.2 Loss Function

For the initial training runs, we applied the categorical cross-entropy (CCE) loss function,

which is widely used for multi-class classification tasks. It is defined as follows:

CCE = −
C

∑
i=1

yi log(pi), (3.1)

where C is the number of classes, yi the ground truth probability, and pi the predicted

probability of class i.

We additionally tested a dual loss function including a multi-class version of focal

loss (CFL; Lin et al., 2017) and dice loss (DL), as implemented by Iakubovskii, 2019. The

dual categorical focal dice loss function (CFDL) used in this work is defined as:

CFDL = CFL + DL, (3.2)

where
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CFL = −yi · α · ((1 − pi)
γ) · log(pi), (3.3)

and

DL = L(tp, f p, f n) =
(1 + β2) · tp

(1 + β2) · f p + β2 · f n + f p
. (3.4)

For CFL, α is a weighting factor and γ the focusing parameter for the modulating

factor (1 − pi). Both values are kept by default. For DL, tp are the true positives, f p

the false positives, f n the false negatives and β a parameter that balances the weight of

precision and recall.

For image segmentation tasks, the loss is computed for each pixel individually and

then averaged over all pixels in a training batch. This is problematic in the presence of

class imbalance, as all pixels are treated equally and the training loss is biased towards

the majority class.

To overcome this problem in our highly unbalanced dataset, we incorporated class

weights into the DL part of the CFDL function by assigning higher weights to the contri-

butions of minority classes.

We computed class weights for the training set after the dataset split to avoid data

leakage using the scikit-learn library (Pedregosa et al., 2011). These weights are mul-

tiplied by the corresponding class score obtained by the loss function before averaging

over all pixels in a batch.

3.5.3 Dropout

We chose to incorporate dropout layers after each upsampling operation in the decoder

with a dropout probability of 0.5. The dropout rate was chosen based on literature (Ren

et al., 2021; Rajaraman et al., 2020).

3.5.4 Pre-training Strategy

We tested different pre-training strategies: (1) In fine-tuning, we used pre-trained en-

coder weights from ImageNet and set all network layers to trainable for the entire train-

ing. This allowed us to tune the learned features to our specific task. (2) In encoder freeze,

we used a fixed feature extractor pre-trained on ImageNet and updated only the decoder
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weights during training. (3) In addition, we trained from scratch, i. e., we randomly ini-

tialized the weights for both the encoder and the decoder.

3.5.5 Augmentation Techniques

We considered the following augmentation techniques:

• horizontal and vertical flipping, to simulate changes in flight orientation;

• rotation, for the same reason;

• cropping, to simulate instability in flight altitude and to introduce variations in

object scale, as ice floes and ponds can vary greatly in size;

• brightness contrast, to account for varying surface temperatures;

• sharpen blur, blurring simulates the impacts of noise or atmospheric effects, while

sharpening reduces these effects;

• Gaussian noise injection, to increase the model’s robustness to noise.

Inappropriate augmentation techniques can introduce unrealistic transformations into

the dataset and lead to a decrease in model performance. Therefore, we subsequently

added the candidate methods in different training runs.

We excluded augmentation techniques like color transformations and perspective

changes from the beginning. Color transformations such as color jitter were not applied

due to the single-channel nature of the images, and perspective transformations are un-

realistic since all images are taken from overhead and approximately the same angle.

We used the publicly available Albumentations library for implementation (Buslaev

et al., 2018). For methods using interpolation, we changed the interpolation to nearest

to preserve categorical mask labels. For rotation, boundary values were extrapolated by

reflection, as this was the most natural choice. Cropping was done by cutting an area

with a minimum of 0.5 and a maximum of 0.8 of the image size and then resizing the

cut to the original image size. If augmentation was sharpen blur, either the operation

’Sharpen’, ’Blur’, or ’MotionBlur’ was chosen with equal probability. Other parameters

were left at their default values.
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We added augmentation after patch extraction, i. e., transformations are applied to

patches and not to the entire images. The implementation can be found in utils/augmentation

.py. Example applications of the augmentation techniques are shown in Appendix A.

3.5.6 Augmentation Design

After selecting the best augmentation configuration, we tested the effect of on-the-fly

versus offline augmentation.

On-the-fly augmentation transforms images in real time as they are fed into the model

(Shorten and Khoshgoftaar, 2019). This typically provides a high degree of flexibility, as

augmentations are applied randomly to each image in a training iteration. On-the-fly

augmentation is memory efficient because no additional storage is required. We imple-

mented on-the-fly augmentation by applying each considered method to the training

image with a probability of 0.5.

Offline augmentation refers to applying transformations to the dataset before train-

ing begins, generating a fixed augmented dataset (Shorten and Khoshgoftaar, 2019). This

allows more control and transparency over the applied augmentations. Offline augmen-

tation effectively increases the size of the dataset, but at the cost of storage requirements.

Wagner, Eltner, and Maas, 2023 reported that offline augmentation can be beneficial for

very small datasets.

3.6 Training and Prediction Procedure

Our training was performed on an Intel i7-9700K CPU@3.60GHz with 8 cores, coupled

with 32GB of RAM. We monitored and plotted our training and validation curves with

respect to mIoU and per-class IoU using the Weights & Biases dashboard (Biewald, 2020).

The implementation can be found in train.py.

We followed Iakubovskii, 2019, and for weights that are randomly initialized, we

used He uniform (He et al., 2015b) initialization for each convolutional block and Glorot

uniform (Glorot and Bengio, 2010) initialization for the final convolutional layer. To opti-

mize the model parameters, we employed the commonly used Adam optimizer (Kingma

and Ba, 2017) with a default learning rate of 0.001. Batch sizes were dependent on the

patch size used (Table 3.1). By default, we trained with the categorical cross-entropy loss
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function, without augmentation, and used the fine-tuning pre-training strategy to speed

up model convergence.

For model selection, we trained most configurations for 100 epochs using gradient de-

scent. A number of epochs of 100 seemed to be a good compromise between the required

computational resources and model convergence. At the end of the training phase, we

saved the best weights of the model in HDF5 format with respect to the minimum vali-

dation loss. This ensures that even if performance drops in later epochs, the best state of

the model is saved.

For prediction (predict_image.py), we used the same image preprocessing as de-

scribed in Section 3.4. For visualization purposes, we optionally converted the resulting

class values to gray levels. Prediction on smaller patch sizes required additional steps,

which we describe in Section 4.3.

3.7 Evaluation

3.7.1 Evaluation Metric

Intersection over Union (IoU), also known as Jaccard index (J), is the standard metric

for segmentation tasks. It measures the similarity between the predicted region and the

ground truth region for a given class. IoU considers both false alarms and missed values

for each class. It is defined as follows:

J(G, P) =
|G ∪ P|
|G ∩ P| , (3.5)

where G is the ground truth and P the predicted segmentation map.

We used this metric for the melt pond, sea ice, and ocean classes, respectively. To ob-

tain a single performance metric, we averaged over all classes. This is hereafter referred

to as mean IoU (mIoU).

3.7.2 Dataset Split

For model selection, we needed a technique that properly described the relative perfor-

mance of the model between different configurations. Using a simple train-test split for
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our very small dataset would likely have suffered from high variation between sets, re-

sulting in different estimates depending on the split. For example, the test set might have

contained only images that were easy to predict, resulting in an optimistically biased

estimate of model performance.

To provide a more robust technique, we used k-crossfold validation. In k-crossfold

validation, the dataset is divided into k subsets of equal size. For each hyperparameter

configuration under observation, we trained k times. In each of the k runs, we used a

different subset for validation and merged the remaining subsets for training. We aver-

aged the performance outputs of all runs to have a single overall measure. In addition,

we monitored the standard deviation of the runs to obtain an estimate of reliability. To

compare different hyperparameter configurations, we considered the best averaged val-

idation mIoU after 20 training steps.

We used a k of 4 to have an equal distribution of 2 images per subset and a manage-

able computational cost. For implementation, we used the scikit-learn library (Pedregosa

et al., 2011). For comparison, we ensured that each hyperparameter configuration re-

ceived the same splits by setting a random state. The class proportions of each subset can

be found in Appendix A.

To construct our final model, we trained on the entire dataset to ensure that we were

not withholding valuable information (Raschka, 2018). We then used an unseen test set

with 2 images as the first component for the final model evaluation. The test set contained

the same class distribution as the training set (see Appendix A). To obtain a more robust

final performance estimate, we also inspected some prediction results and evaluated the

final MPF product (Section 3.7.3).

An overview of the evaluation procedure is shown in Figure 3.5 and the implementa-

tion is part of train.py.

3.7.3 Evaluation of Resulting Melt Pond Fraction

For additional evaluation, we computed the MPF using segmentation maps predicted by

our final model and compared the result with an estimate obtained from VIS imagery

(mpf.ipynb). We used the VIS images introduced in Section 3.2. We randomly selected
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FIGURE 3.5: The process of model selection (top) and final model construc-
tion (bottom) in our experiment. For visibility reasons, only a part of the
final model evaluation process is shown. The figure is inspired by Raschka,

2018.

50 images from Flight 9 for which we had TIR and VIS records taken at the same second.

To segment the VIS images, we used the publicly available OSSP algorithm from Wright

and Polashenski, 2018, which was developed for this task. The OSSP algorithm provided

images in TIFF format with four classes: gray ice, white ice, melt pond, and open water.

We used the following formula for both VIS and TIR:

MPF =
nr_melt_pond_pixels

nr_sea_ice_pixels + nr_melt_pond_pixels
, (3.6)

where we have merged gray ice and white ice pixels for the VIS images.
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TABLE 3.1: Comparison of different patch sizes. Trainset and valset refer
to the training and validation subsets during k-crossfold validation, testset
to the test set used for final model evaluation. Step size corresponds to the
stride at which the sliding window moves across the input image to extract
patches. Note that the content descriptions are approximate observations
and depend on the size of the features examined. Patch sizes, step sizes

and overlap are given in pixels, the other numbers in images.
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Chapter 4

Results and Discussion

In this chapter, we present our results. First, we discuss our observations from experi-

menting with different hyperparameters to find the optimal network configuration (Sec-

tion 4.1). Then we try to evaluate the final performance of the model (Section 4.2). We do

this through quantitative evaluation on an independent test set, qualitative inspection of

prediction results, and evaluation of the final melt pond product.

We provide additional training and validation curves in Appendix B.

4.1 Model Selection

As introduced in Section 3.7.2, we used 4-crossfold validation for model selection with

the validation mIoU of the best average epoch as selection criterion. The model con-

verged in each training run unless otherwise noted.

4.1.1 Patch Size

We first investigated to choose the optimum patch size for model training. The results

can be found in Table 4.1 and Figure 4.1.

We found a positive correlation between larger patch size and segmentation perfor-

mance, with the exception of the patch size of 256 x 256, which may have suffered from

redundant information due to overlapping patches. Especially the performance of the

ocean class increased with a larger receptive field (∆=0.207, comparing the patch size of

480 x 480 to 32 x 32). This is probably due to the fact that the ocean usually covers larger

areas, which can only be partially captured by a small patch size.
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Patch sizes 128 x 128 and 480 x 480 had similarly high performance with stable vali-

dation curves. The validation curve of 480 x 480 converged more slowly, which may be

due to the smaller batch size. We selected 480 x 480 for further experiments because of a

higher best average mIoU. In addition, 128 x 128 was disfavored because less information

was used due to patch extraction with a large step size (Table 3.1).

Our results indicate the importance of context to correctly identify the surface fea-

tures. In contrast to Iglovikov, Mushinskiy, and Osin, 2017, we achieved superior perfor-

mance even with a very small batch size of 2 in the case of 480 x 480. One possible reason

for this is that much of the variance of the features is already contained in individual

images, and thus enough diversity is seen before a weight update is performed.

TABLE 4.1: Comparison of different patch sizes with rounded values. We
colored the column that served as selection criterion. Best results are in
bold. ’epoch 99’ refers to the end of training. ’std’ = standard deviation,
where lower is better. All values except for those in column ’epoch 99’ are

obtained from the best average epoch in terms of validation mIoU.

4.1.2 Loss Function

Next, we tested the weighted focal dice loss function introduced in Section 3.5.2. Previous

runs with categorical cross-entropy loss showed a large disparity in model performance

across classes, indicating sensitivity to class imbalance (Table 4.1). In previous runs, the

sea ice class, which has the largest number of pixels, performed best, while the melt pond

class performed poorly.
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FIGURE 4.1: Comparison of the validation curves of different patch sizes,
averaged over all crossfold subsets. Light green = 480, gray = 256, light

blue = 128, pink/rose = 64, dark red = 32.

Using the weighted focal dice loss, we observed an overall performance improvement

(∆=0.035), which was particularly present for melt pond IoU (∆=0.072, Table 4.2). Sea ice

performance was slightly worse due to less emphasis on this class during training. We

continued to use the weighted focal dice loss function for further experiments.

TABLE 4.2: Comparison of different loss functions with rounded values.
’CCE’ = categorical cross-entropy loss, ’CFDL’ = categorical focal dice loss.

For more information refer to the caption of 4.1.

4.1.3 Dropout

We considered dropout layers because overfitting was present in all previous training

runs. The results (Table 4.3) show that dropout was successful: Training performance

decreased slightly due to information loss during training (∆=-0.015), while validation

performance increased (∆=0.025). Therefore, we kept dropout for further experiments.
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TABLE 4.3: Comparison of training with and without dropout. For more
information refer to the caption of 4.1.

4.1.4 Pre-training Strategy

Table 4.4 shows our results when experimenting with the pre-training strategy. When

we froze the encoder, performance decreased compared to the fine-tuning strategy (∆=-

0.035). This suggests that ImageNet and melt pond images are too dissimilar to use the

same feature extractor, and fine-tuning is needed. However, both pre-training strategies

on ImageNet yielded much better results than random initialization. When we trained

the model from scratch, mean performance decreased significantly (∆=-0.11, when com-

paring to fine-tuning) and melt pond IoU showed an even higher drop (∆=-0.212). We

kept the fine-tuning strategy for further experiments.

TABLE 4.4: Comparison of different pre-training settings. ’fine-tuning’ =
all layers are set trainable during training. ’encoder freeze’ = only decoder
is set trainable. ’from scratch’ = all weights are randomly initialized. For

more information refer to the caption of 4.1.

4.1.5 Augmentation Techniques

Next, we explored the effectiveness of different augmentation techniques in on-the-fly

mode (Table 4.5).
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After adding brightness contrast augmentation, we observed that the training curve

remained at a very low level and was highly fluctuating (Figure 4.2). The same was true

for Gaussian noise transformation. This may indicate that the added variations were too

strong, preventing the model from learning meaningful patterns from the data.

For cropping and rotation changes, the model converged but still produced an unsta-

ble validation curve at a lower performance level (Figure 4.2). The cropping factor may

have been too large to successfully predict validation data, because all of the images con-

sidered were taken from a similar flight altitude and variations in feature size may not

have been significant. Extrapolation may have affected rotation performance.

Only sharpen blur could slightly improve the validation performance compared to

the setting without augmentation (∆=0.008) and was kept for the final model evaluation.

The training performance became slightly worse (∆=-0.034), indicating the method’s suc-

cess in overfitting. However, the improvements remain small, making augmentation

relatively unimportant for this work.

TABLE 4.5: Comparison of different augmentation techniques. ’flip’ com-
prises horizontal and vertical flipping. For more information refer to the

caption of 4.1.

4.1.6 Augmentation Design

We compared on-the-fly and offline augmentation using only sharpen blur, as it was

the only technique that showed performance improvement in the previous experiment.



32 Chapter 4. Results and Discussion

FIGURE 4.2: The top part shows a comparison of the training curves of dif-
ferent augmentation techniques, averaged over all crossfold subsets. The
bottom part shows corresponding validation curves. Black = no augmen-
tation, purple = horizontal and vertical flip, dark red = sharpen blur, light
blue = crop, orange = rotate, yellow = brightness contrast, light green =

Gaussian noise.

FIGURE 4.3: Comparison of the validation curves of on-the-fly augmenta-
tion (blue) and offline augmentation (orange), averaged over all crossfold

subsets. Augmentation technique applied was sharpen blur.

For offline augmentation, we set the size of the dataset increase to a factor of 2 to avoid

duplicates in the training set. The final offline training set included an equal number

of original and augmented images. This maintained a similar proportion as in on-the-

fly mode, where each image had a 0.5 probability to be augmented. Additionally, we

increased the number of epochs to 200 to observe further variations beyond our previous

examination.

The results are shown in Table 4.6 and Figure 4.3. In terms of performance, no signif-

icant difference could be observed. We decided to keep on-the-fly augmentation because

of its slightly higher validation mIoU (∆=0.022) and its better ability to mitigate overfit-

ting. No noticeable changes occured after 100 epochs.
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FIGURE 4.4: The hyperparameter optimization process with selected val-
ues in red. Hyperparameters from left to right: patch size, loss function,
dropout, pre-training strategy, augmentation technique, augmentation de-
sign. ’CCE’ = categorical cross-entropy loss, ’CFDL’ = categorical focal dice
loss, ’freeze’ = encoder freeze, ’bright-contr’ = brightness contrast, ’sharp-

blur’ = sharpen blur.

TABLE 4.6: Comparison of different augmentation designs. For more in-
formation refer to the caption of 4.1.

A summarizing overview of the entire selection process is shown in Figure 4.4.

4.1.7 Training Stability

We attempted to assess the robustness of our evaluation method by examining the vari-

ance across different crossfold subsets. For all hyperparameter configurations, validation

IoU had a relatively high standard deviation with respect to different validation sets (Ta-

bles 4.1, 4.2, 4.3, 4.4, 4.5, 4.6). This suggests that the performance was dependent on the

particular dataset split. Figure 4.5 shows that this is mainly due to the first subset: When

this was chosen for validation, performance was particularly poor. This suggests a shift

in the distribution of images in this set compared to the others, which is also indicated

by a slight difference in class proportions (Appendix A).
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FIGURE 4.5: Validation performance of different dataset splits in crossfold
validation. Each plot shows the performance of a model configuration,
where each line was produced by evaluating with a different validation
subset, with the same splits across different configurations. Purple = sub-
set 1, light blue = subset 2, dark red = subset 3, orange = subset 4. The
model configurations shown are randomly chosen. Left: patch size 32,
middle: patch size 480 with categorical focal dice loss and dropout layers,
right: same configuration as in the middle plot with on-the-fly sharpen
blur augmentation added. Note that the x-axis was squeezed compared to

other plots for visibility reasons.

4.2 Final Model Construction

To obtain a final model from the optimized hyperparameter configuration, we trained

our network on the entire crossfold dataset and evaluated it on the unseen test images.

We trained for 500 epochs. In previous experiments, extended training did not result

in noteworthy changes. However, for the final run, we were able to accommodate the

required computational resources and still saved the model weights from the epoch with

the minimum validation loss. The results are shown in Table 4.7 and Figure 4.6. The

final test mIoU is much lower than the validation mIoU from previous experiments (∆=-

0.152). This may indicate that we overfitted our validation sets during hyperparameter

optimization.

TABLE 4.7: Final model performance after training the best configuration
for 500 epochs and evaluation on an independent test set. Values refer to
epoch 85, as this was the epoch with minimal test loss, from which the final

weights are stored.

4.2.1 Qualitative Results

We present some prediction results in Figure 4.7.
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FIGURE 4.6: Test loss (light green), training mIoU (dark red), and test mIoU
(blue) for the final model configuration. Note that the loss extends the plot

scale in the early epochs.

Qualitative evaluation reveals the weaknesses of our model. Poor results are obtained

for images with ice floes that are warmer than the ocean area (fourth row, left). Here, the

model seems to have learned from the temperature ordering and predicted warmer areas

(lighter) as ocean and colder areas (darker) as ponds and ice. From Flight 16, samples

with small temperature contrasts between ice and ocean could not be predicted correctly.

We attribute the poor prediction performance to the small training dataset with lim-

ited feature diversity, as images from Flight 16 and samples with reversed temperatures

were not seen during training. Images similar to those in the training dataset were al-

ready predicted relatively well, with most errors occurring in the confusion of submerged

ice and small areas of ocean between floes (bottom row, left; second row, left).

4.2.2 Melt Pond Fraction Results

The results of computing melt pond fraction from predicted TIR and corresponding VIS

images are shown in Table 4.8, top part. The following must be considered for the inter-

pretation of the values: (1) The VIS images show a larger area than the TIR segmentation

maps (Figure 3.2), where the latter are additionally center-cropped. TIR image distortions

affect comparability. (2) The VIS classification algorithm itself is subject to uncertainties.

(3) Differences between the sensors in the ability to detect melt ponds (Section 4.4).

These uncertainties, together with the observation of large prediction errors in the
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FIGURE 4.7: Qualitative results of the final segmentation model for se-
lected images. Black = melt pond, gray = sea ice, white = ocean. Columns
from left to right: model input Flight 9, prediction Flight 9, model in-
put Flight 16, predictions Flight 16. In input imagery, lighter regions are
warmer and darker regions colder. Location: Fram Strait region. Date: July

18, 2022 (Flight 9) and July 30, 2022 (Flight 16).
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TABLE 4.8: The top part shows MPF computed from 50 randomly selected
VIS images (left) and corresponding TIR images predicted by our final
model (right). The bottom part shows MPF computed from 10 cropped
VIS images (left) and corresponding annotated TIR images (right). The
classification of the VIS images was performed using the OSSP algorithm

of Wright and Polashenski, 2018.

previous evaluation, make it difficult to correctly interpret the MPF result in terms of

new insights into model performance. Nevertheless, we have included it in our work so

that it can be refined and used in the future as an additional evaluation method and, in

the final use case, to compute MPF from TIR.

4.3 Ablation Study: Border Effects

When examining the predictions of smaller patch sizes, we found that additional pro-

cessing was required to produce more accurate results. In this section, we discuss the

problems we observed and how we accounted for them.

Since we fixed the model input size before training, segmentation for smaller patch

size configurations was done by using crops of the image to be predicted. We initially

used a simple procedure of extracting patches, feeding them into the model, and con-

catenating predictions to reach the original image size. This led to problems: (1) Patch

sizes of 64, 128, and 256 could not be used for full image predictions because they are not

divisors of the original image size, and (2) border effects resulted in square structures in

the final image (Figure 4.8, middle). This is due to missing context in the border regions,

which leads to inaccurate predictions in these areas (Iglovikov, Mushinskiy, and Osin,

2017).

To address both problems, we integrated a function that smoothly blends segmenta-

tion masks by predicting class values for overlapping squares and using 2D interpolation

to determine the final prediction. The original code with more details can be found at

https://github.com/Vooban/Smoothly-Blend-Image-Patches. We continue to refer to

this function as patch stitching function.

https://github.com/Vooban/Smoothly-Blend-Image-Patches
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FIGURE 4.8: Example of border effects for patch size 32 (middle), corre-
sponding model input (left), and prediction postprocessed by the patch
stitching function (right). Red rectangles show examples of square struc-
tures. Prediction was performed using the 32 x 32 patch size configuration

with weights from crossfold run 3 due to relatively high performance.

We observed improved results (Figure 4.8, right). Since a smaller patch size has more

borders in total, and we computed validation performance without incorporating post-

processing, evaluation in Section 4.1.1 may have been pessimistically biased with respect

to smaller patch sizes.

4.4 Ablation Study: Comparison of Melt Pond Detection between

TIR and VIS

In Section 3.2 we observed that VIS images show more ponds than TIR. This discrepancy

influenced our evaluation method in Section 4.2.2 and is important to be aware of when

using TIR for MPF retrieval.

We compared MPF in classified VIS with all annotated TIR images to estimate the dif-

ference in melt pond detection due to the sensor. This time, we manually cropped the VIS

images to match the approximate region of the annotated TIR images. We could afford

to do this because the number of images was relatively small. Otherwise, we followed

the same procedure as in Section 3.7.3. The results are shown in Table 4.8, bottom part,

and provide a numerical evidence base for underrepresentation of melt ponds in TIR that

needs to be considered in future work.
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Chapter 5

Summary and Conclusion

In this final chapter, we summarize our experimental findings and give directions for the

future.

The goal of this thesis was to develop a segmentation method that separates helicopter-

borne TIR images into melt pond, sea ice, and ocean classes. We decided to use a U-net

model, which can automatically extract multiple features and is known to be able to learn

from limited training data. We tested different hyperparameters, namely patch size, loss

function, dropout, transfer learning, and augmentation. Then we constructed a final

model with the best configuration.

The primary limitation that we faced was the small number of annotated images in

our dataset, resulting from the time-consuming process of manual labeling. As a conse-

quence, our model experienced overfitting. We observed limited generalization ability on

images dissimilar to those seen during training, such as cases when sea ice was warmer

than the surrounding ocean area or images from a different flight. In addition, small

data affected the reliability of our evaluation method. During hyperparameter optimiza-

tion, we found divergent performance outcomes depending on the specific validation set

used, indicating that different sets could not represent the real data distribution. Our fi-

nal model achieved a test mIoU of 0.7, although this value is likely to vary when different

data is used for testing.

Despite the challenges, we remain hopeful for using U-net as segmentation tool for

the task at hand. Successful predictions in some cases demonstrate the potential of the

method when annotation proceeds.

For reference in the future, we summarize our findings on hyperparameters in the

following.
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• Larger patch sizes were more successful than smaller ones, suggesting that context

helps to accurately detect melt ponds. Another possible reason for this pattern is

that border effects may have pessimistically biased performance for smaller patch

sizes. We found that border effects can be improved using an overlapping patch

stitching function as a postprocessing step.

• Regarding the patch extraction method, retrieving overlapping patches for training

set creation seemed to be detrimental to performance, possibly due to redundant

information.

• Melt pond and ocean classes were poorly detected compared to sea ice, likely due

to the class imbalance in the training dataset. Some improvement was achieved by

using a weighted loss function.

• Using dropout layers in the decoder could help against overfitting.

• Consistent with the findings of Hu et al., 2015, Yosinski et al., 2014, and Lima and

Marfurt, 2019, pre-training on ImageNet proved to be successful, even though our

dataset is very dissimilar. This shows the generalization power of ImageNet even

for very different tasks. Fine-tuning resulted in better performance than using a

fixed feature extractor.

• Sharpen blur was the only augmentation technique that could lead to a slight per-

formance improvement, while Gaussian noise and brightness contrast changes were

likely too unrealistic, resulting in unsuccessful training. We observed that the choice

between on-the-fly and offline augmentation did not make a large difference for our

dataset.

We also found a discrepancy between the detection of melt ponds using TIR and VIS

sensors, with VIS showing more melt ponds. It is important to consider this difference

when using TIR data for accurate MPF retrieval in the future.

Future directions are discussed in the next, final section.
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5.1 Future Directions

To improve model performance, the first and most crucial step is to create a larger and

more diverse annotated dataset. This includes images from different flights and, if avail-

able, from different seasons and areas. To speed up the labeling process, we propose

to consider semi-supervised approaches such as self-training (Amini et al., 2023). This

could be done by using our model to predict labels for unlabeled images, adding high

confidence predictions to the original labeled training data, and retraining the model. By

iterating this approach several times, we may be able to gradually improve performance.

Furthermore, it is important to include georeferencing either before or after model

training to eliminate image distortions.

To enhance the model’s generalizability, further investigation into appropriate aug-

mentation techniques could be done. If simple methods continue to fail, more advanced

techniques may be encountered. One option would be elastic deformations, which intro-

duce local transformations by applying random displacements to image pixels (Simard,

Steinkraus, Platt, et al., 2003). This may be able to mimic differences in melt pond shapes.

Elastic deformations are used extensively in the original U-net.

In addition, we suggest a number of modifications that could be tested as part of

our experimental pipeline. Currently, the data is prepared by mapping the temperature

values to matplotlib’s ’gray’ colormap and loading them as grayscale for model training.

This may have adversely affected the pixel values. An alternative option would be to

convert the temperatures to 256-level grayscale values and directly train on the resulting

images instead of saving and colormapping them as an intermediate step.

As a further preprocessing step, normalization can increase model performance. It

can also help to encounter scale and distribution shifts across different flights.

During hyperparameter optimization, we chose a relatively high dropout probability

of 0.5, which could be tested for smaller values.

Furthermore, to better estimate the dependence on image context, configurations for

smaller patch sizes should be evaluated after processing masks with the patch stitching

function.

While this work exclusively considered U-net, future work could explore other archi-

tectures. Attention mechanisms may be an option to help focus on more relevant features
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(Fu et al., 2018; Ren et al., 2022).

Ultimately, the goal of achieving accurate segmentation of TIR images remains an

ongoing research area and opens avenues for better understanding the characteristics of

Arctic sea ice during the summer.
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Appendix A

Additional Material

Annotation Procedure

Image preparation (data_preparation/extract.ipynb)1:

• Clip TIR temperature range to 273 - 276 Kelvin to increase contrast

• Use matplotlib’s ’cividis’ colormap for better visibility

Edge map preparation (data_preparation/edge_detection_annotation.ipynb):

• Resize image to 2345 x 3210 for better visibility

• Show different thresholding methods from skimage applied to the image and select

the best by manual inspection (in our case mostly ’mean’ and ’otsu’)

• Binarize the image using the selected filter

• Apply Scharr operator from skimage and convert all non-zero values in the image

to 255 to create a clearer mask

Annotation (The GIMP Development Team, 2019):

• Load image into GIMP software

• Add mask as extra layer

• Make edge map background transparent with Colors > Color to Alpha

• Manually correct edges with pencil and eraser tool and fill object with class-specific

color (black - melt pond, gray - sea ice, white - ocean)

• Export mask as PNG file

Make sure that mask only contains three color values in the end.
1https://github.com/marlens123/ponds

https://github.com/marlens123/ponds
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FIGURE A.1: Intermediate mask while editing in GIMP. Note that red pix-
els are converted to gray, turquoise to white and yellow to black in the end.

FIGURE A.2: The entire dataset with training data (including all crossfold
subsets) in the upper 4 rows and test data (used for final model evaluation)

in the lowest row. Images and masks are already center-cropped.
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FIGURE A.3: Class distributions for different crossfold subsets. From left
to right: fold 1 - fold 2 - fold 3 - fold 4.

FIGURE A.4: Comparison of different patch sizes. From left to right: 32 x
32, 64 x 64, 128 x 128, 256 x 256, 480 x 480. The red rectangles mark the next
smaller patch size. Note that the image sections are chosen for visualiza-
tion purposes and do not necessarily correspond to the real training data.
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FIGURE A.5: Comparison of different augmentation techniques. From top
to bottom: original image, flipping, rotation, cropping, brightness contrast,

sharpen blur, Gaussian noise.
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Appendix B

Evaluation Plots
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FIGURE B.1: Comparison of different patch sizes. From top left to bottom
right: mean IoU, validation melt pond IoU, validation ocean IoU, valida-
tion sea ice IoU. Light green = 480, gray = 256, blue = 128, pink/rose = 64,

dark red = 32.

FIGURE B.2: Comparison of different loss function. From top left to bottom
left: mean IoU, validation mean IoU, validation melt pond IoU, validation
ocean IoU, validation sea ice IoU. Light green = CCE, dark green = CFDL.
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FIGURE B.3: Comparison of dropout versus no dropout. From top left to
bottom left: mean IoU, validation mean IoU, validation melt pond IoU,
validation ocean IoU, validation sea ice IoU. Brown = dropout, green = no

dropout.
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FIGURE B.4: Comparison of different pre-training strategies. From top left
to bottom left: mean IoU, validation mean IoU, validation melt pond IoU,
validation ocean IoU, validation sea ice IoU. Yellow = from scratch, brown

= fine-tuning, orange = encoder freeze.
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FIGURE B.5: Comparison of different augmentation techniques. From top
left to bottom left: validation melt pond IoU, validation ocean IoU, valida-
tion sea ice IoU. Black = no augmentation, dark red = sharpen blur, purple
= flip, orange = rotate, blue = crop, light green = Gaussian noise, yellow =

brightness contrast.

FIGURE B.6: Comparison of different augmentation designs. From top left
to bottom right: mean IoU, validation melt pond IoU, validation ocean

IoU, validation sea ice IoU. Blue = on-the-fly, orange = offline.
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FIGURE B.7: Final run evaluation. From top left to bottom left: test melt
pond IoU, test ocean IoU, test sea ice IoU.
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