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ABSTRACT 

This study evaluates the accuracy of the ARTIST Sea Ice algorithm over land-fast ice. The algorithm was 

found to have underestimations above 30% in some cases by comparison to optical images from the Landsat satellite 

and MODIS sensors. Several potential causes of these underestimations are entirely or partially disproved, including 

temperature changes, radiative flux, and atmospheric interference. Others lacked sufficient data to analyze, including 

salinity, snow characteristics, and surface roughness. Some potential causes lack sufficient data for analysis. Aside 

from these, many common error sources are eliminated as potential causes; however, the reason for the anomalies 

remains unclear. 

 

  
.1. INTRODUCTION  
 

The ARTIST (Arctic Radiation and 
Turbulence Interaction Study) Sea Ice (ASI) 

algorithm generates 6.25 km resolution 

gridded sea ice concentration (𝐶𝑖𝑐𝑒) maps 
using passive microwave satellite data at 89 

GHz. These maps can be used in climate 

studies, navigational chart production, and 
arctic biology research. Because of the use of 

the 89 GHz channel, the ASI algorithm gives 
resolutions almost 4 times as fine as the 

commonly-used NASA Team and Bootstrap 

algorithms (Spreen et al. 2008, Kalescke et al. 
2001). Additionally, it produces more accurate 

estimates of sea ice extent than other sea ice 
concentration algorithms and provides 

information closer to the coast than other 

widely-used algorithms due to its small 
footprint.  

This study utilizes both passive 
microwave and optical data. Passive 

microwave data is important in remote sensing 
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because it is not dependent on sunlight. It is 

also relatively unaffected by clouds, although 
they can have some effect at 89 GHz.  

Optical data, on the other hand, is 
simple to understand and has very high 

resolution of up to 10 m. However, it can be 

difficult to differentiate clouds, snow, and ice, 
and data is only available during the day 

(Wiebe 2007). This means that its availability 
in polar regions, where night can last for 

several months and days are often cloudy, is 

quite sparse. Still, it is often used as ground-
truth because of the lack of error sources and 

ease of interpretation.  
Recently, several areas where the ASI 

algorithm significantly underestimates sea ice 

concentration became apparent in comparison 
to 30 m-resolution optical Landsat 8 imagery 

(Example Figure 1.0.1). These anomalies 
persist over the course of at least several 

years, though their intensities and locations 

vary. The 2014-2015 season is analyzed in this 
study as a representative year with a variety of  
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Figure 1.0.1: ASI concentration (top) showing 

underestimation in the bay and Landsat high-resolution 

optical image (bottom) showing a large sheet of fast ice 

in Hecla and Griper Bay on April 1st, 2015. 

 
data products available. This study seeks the 

answers to two questions: What could cause 

such anomalies and what does cause these 
particular underestimations? 

 
1.1 The Cases 

 

This study investigates the ASI 
concentration reported for ten cases of land-

fast ice, i.e., ice that is attached to a landmass, 

in the Northern Hemisphere. Their locations 
are shown in Figure 1.1.2. 

Significant anomalies (over 10% error) 
are present in six cases, while the ASI 

algorithm performs well in four cases (Table 

1.1.1). This study considers errors consitently 
below 10% to be minor because, while small 

errors are common and could have many 
causes, the large errors this study investigates 

likely share a cause. The 10% threshold is a 

rough estimate – it is possible that whatever 
causes the larger error also causes the smaller 

errors, but would be more difficult to isolate 
where its imact is less significant. 

Note that the proportions of good and 

bad cases are not meant to repesent the 
performance of the ASI algorithm overall. 

Cases with extreme amounts of water vapor 
present were excluded from this study. Some 

water vapor is present in all cases and could 

account for some of the less significant 
anomalies, such as those in cases 7 and 10. 

Images of the ASI algorithm output and 
corresponding Landsat or MODIS visible 

imagery for selected dates can be found in 

Appendix A.  
 

1.2 Physical Basis 

 

Brightness temperature is the product 

of an object’s temperature and emissivity (𝜀). 

𝜀 is the ratio of emitted radiation to radiation 

emitted by a blackbody of the same 
temperature. Because of radiation from other 

objects (such as the atmosphere), emitted 

radiation in this calculation includes reflected 
radiation. When radiation encounters an 

interface between two mediums with different 
refractive indices, it can become polarized 

according to the Fresnel equations as more of 

one directional component of the radiation is 
transmitted and more of the other is reflected. 

The polarization is also dependent on the 
angle of incidence; at the Brewster angle 

(about 53° for a water-air interface), all of the 
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Figure 1.1.2: Overview of locations of cases 

investigated. The case numbers listed correspond with 

those used throughout the paper. 

 
vertical polarization is transmitted. The 

AMSR-2 sensor uses an incidence angle of 

55°, so brightness temperature from water 
used in the ASI algorithm is highly polarized. 

Vertical and horizontal polarizations of 

brightness temperature are denoted by 𝑇𝐵,𝑉  

and 𝑇𝐵,𝐻, respectively. The polarization 

difference will be defined as  

 

𝑃 = 𝑇𝐵,𝑉 − 𝑇𝐵,𝐻 .   (1) 

 

For this algorithm, it is important to 
note that radiation emitted from water is more 

strongly polarized than that emitted from ice. 
Snow, which is found on ice in most cases, 

further lowers the polarization difference of 

brightness temperature from ice as it scatters 
the radiation (Tonboe et al. 2005).  

 
1.3 The Algorithm 

  

The ASI algorithm is a hybrid of two 
sea ice concentration algorithms (Kaleschke et 

al. 2001, Spreen et al 2008). The first is that 
proposed by Svendsen et al. (1987) for 

frequencies near 90 GHz and the second is the 

Bootstrap algorithm (Comiso 1995). The 
Bootstrap algorithm is only used where no ice 

is present. The ASI algorithm processes 89 
GHz brightness temperature from the 

Advanced Microwave Scanning Radiometer 

(AMSR-2) sensor mounted on the Global 
Change Observation Mission -Water (GCOM-

W1) satellite. 
 In the Svendsen algorithm, the 

concentrations of ice and water are defined 

such that  
 

1 = 𝐶𝑊 + 𝐶𝐹 + 𝐶𝑀,   (2) 

 

Table 1.1.1: An overview of the cases. The 95th percentile maximum discrepancy was calculated by first finding the 

maximum error for each case and day (assuming 100% is correct for landfast ice) and then calculating the 95 th 

percentile of those maximum errors. The values and dates in the table are from the days on which the maximum 

error was closest to that calculated as the 95th percentile. Only dates from January through April of 2015 were used 

in this calculation, and January was omitted from cases 6, 8, and 10 due to difficulties verifying actual ice 

concentration. 

Case 95th percentile discrepancy Date (2015) Latitudes Longitudes 

1 32.34% 24 March 73.00 - 73.70 N  120.5 - 124.0 E 

2 20.45% 8 March 67.00 - 69.00 N 115.0 - 107.0 W 

3 26.58% 27 March 75.00 - 76.50 N 115.0 - 107.0 W 

4 20.32% 24 April 70.20 - 71.00 N 152.4 - 150.1 W 

5 30.20% 15 March 70.50 - 72.75 N 129.7 - 135.0 E 

6 4.01% 2 February 70.10 - 70.25 N 159.5 - 162.0 E 

7 7.29% 1 January  70.80 - 71.40 N 152.4 - 159.0 E 

8 6.98% February 2nd 82.40 - 83.60 N 56.0 - 48.0 W 

9 14.92% March 13th 69.20 - 72.50 N 100.0 - 98.4 W 

10 2.39% February 2nd 67.70 - 70.30 N 68.9 - 66.2 W 
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where 𝐶𝑊 represents the concentration of 

water, 𝐶𝐹 represents the concentration of first-

year ice, and 𝐶𝑀 represents the concentration 

of multi-year ice (ice that is more than a year 

old). Due to the similarities in their 
polarization differences, which are used to 

find concentration, 𝐶𝐹 and 𝐶𝑀 are combined in 

the variable 𝐶𝑖𝑐𝑒. Since the emissivity of each 

substance is proportional to its concentration, 

it follows that 
 

𝑇𝐵,𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑊𝑇𝐵,𝑤𝑎𝑡𝑒𝑟 + 𝐶𝑖𝑐𝑒𝑇𝐵,𝑖𝑐𝑒 ,    (3) 

 

where 𝑇𝐵  is brightness temperature.  

Since the received polarization difference 
is a weighted fraction of the polarization 

differences of water and ice, based on 
concentration, Equation (3) can be written as 

 

𝑃 = 𝐶𝑊𝑃𝑊 + 𝐶𝑖𝑐𝑒𝑃𝑖𝑐𝑒.  (4) 

 
 Incorporating atmospheric effects and 

combining equations (2) and (4), Svendsen et 

al. (1987) proposes the equation  
 

𝐶𝑇 = 𝑑3𝑃3 + 𝑑2𝑃2 + 𝑑1𝑃 + 𝑑0,      (5) 

 

which is basis of the ASI algorithm for areas 
where ice is present. The incorporation of 

atmospheric effects into the algorithm is 
discussed in more detail in Section 2.3. 

 Due to the high sensitivity to water 

vapor near 90 GHz, three weather filters are 
incorporated. The concentrations at all points 

which these filters determine to be ice-free are 
set to 0 (Kaleschke et al. 200, Spreen et al. 

2008). Two gradient ratio filters and a filter 

based on an independent, low-frequency sea 
ice concentration algorithm are used (Spreen 

et al. 2008).  
 The gradient ratio of two frequencies 

M and N is defined based on the vertical 

polarization of brightness temperature (𝑇𝐵,𝑉) 

as 
 

𝐺𝑅(𝑀, 𝑁) =
𝑇𝐵,𝑉(𝑀)−𝑇𝐵,𝑉(𝑁)

𝑇𝐵,𝑉(𝑀)+𝑇𝐵,𝑉(𝑁)
.          (6) 

 
The sea ice concentration in the ASI 

algorithm is set to 0 where GR(36.5,18.7) is 

greater than or equal to 0.045 or 
GR(23.8,18.7) is greater than or equal to 0.04. 

The third filter sets the concentrations at all 
points found to have no ice by the Bootstrap 

algorithm (another concentration algorithm) to 

0 (Spreen et al. 2008). 
 

2. DATA AND METHODS 

 

2.1 Data 

 

 This study uses three types of data. 

The first type is 89 GHz polarized brightness 
temperature from the Advanced Microwave 

Scanning Radiometer (AMSR-2) sensor 

mounted on the Global Change Observation 
Mission - Water (GCOM-W1) satellite 

operated by the Japanese Aerospace 
Exploration Agency (JAXA) and provided by 

the University of Bremen (see AMSR-2 in 

References). The daily averages of the 
brightness temperatures have been gridded to 

a 6.25 km resolution polar stereographic grid. 
 The second data source is the output of 

the ASI algorithm using the gridded 

brightness temperatures from AMSR-2 as 
input. This data is likewise available on a 6.25 

km polar stereographic grid and was provided 
by the University of Bremen. 

 The last type of data used is the 

European Centre for Medium-Range Weather 
Forecasting (ECMWF) ERA-Interim 

Reanalysis dataset (Dee et al., 2011). For this 
study, the 0.4° resolution was used. This 

means that there was a data point every 0.4° 
longitude and every 0.4° latitude. 2 m 
temperature, ice surface temperature, snow 

depth, total column water, total column ozone, 

top net thermal radiation, surface net thermal 
radiation, surface latent heat flux, and a land 
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mask were used from this dataset. The surface 
roughness and forecast surface roughness 

parameters provided was examined, but not 
used due to suspected inaccuracy over sea ice. 

 

2.2 Methods 

  

 First, several potential causes of the 
anomalies in cases 1, 2, 3, 4, 5, and 9 were 

identified based on physical reasoning. For 

each potential cause, key parameters were 
plotted in timeseries and/or correlation plots 

with either polarization difference or ASI 𝐶𝑖𝑐𝑒. 

The timeseries plots were analyzed visually 

for patterns and correlation coefficients and p-
values were found for all correlation plots. 

 
3. Potential Causes 

  
3.1 Temperature 

 

 Temperature could have affected the 
brightness temperatures recorded by AMSR-2 

in several ways. The most obvious reason 
would be that the temperature occasionally 

rose above zero degrees Celsius and caused 

the surface of the ice to melt or caused the 
snow on top of the ice to melt and re-freeze as 

a specular, strongly polarizing interface. This 
effect would be similar for any instance 

causing water to appear on the ice. Water on 

top of ice appears the same as open water to 
the AMSR-2 sensor. Either of these would 

cause brightness temperature polarization to 
increase while leaving the underlying ice 

intact.  

Another reason to suspect temperature 
as a potential cause is the well-known 

dependence of emissivity on temperature. If 
temperature had affected horizontal and 

vertical emissivities of the ice unequally, it 

would have changed the polarization 
difference received by AMSR-2 and thus the 

output of the ASI algorithm. 

Temperature is not the only factor 
which affects brightness temperature, so other 

factors could still be responsible. 
 

3.2 Surface Roughness 

 
 Surface roughness is widely known to 

have a significant effect on brightness 
temperature (Shokr and Sinha 2015, Grenfell 

et al. 1988), although its quantification is 

inconsistent. It can be characterized 
qualitatively, as in Grenfell et al. (1988), or by 

the correlation length or root mean square 
(rms) height (Manninen 1997). Grenfell et al. 

(1988) showed that the effect of surface 

roughness on brightness temperature does not 
necessarily change both polarizations by the 

same amount around 89 GHz. Therefore, it 
seems reasonable that unusual surface 

roughness could have caused the anomalies.  

 
3.3 Snow 

 
 Snow can scatter radiation and thus 

decrease the polarization difference (Tonboe 

et al. 2005). It also affects surface roughness. 
Therefore, snow depth could be a cause. 

Because the dense layer of snow affects 
polarization difference the most (Tonboe et al. 

2005), another possibility would be that the 

snow was present and deep, but had low 
density. 

 
3.4 Atmospheric Interference 

 

 Scattering does not only occur in the 
snow layer, but also in the atmosphere. Both 

the intensity and polarization of radiation can 
change between the ground and the satellite. 

The 89 GHz channel used by the ASI 

algorithm is especially prone to interference 
from water vapor. In the algorithm, the change 

in polarization is accounted for by the 
equation
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𝑃𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 = 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝛼.     (7) 

 

In this equation, 𝛼 is defined as  
 

𝛼 =  𝑒−𝜏(1.1𝑒−𝜏 − 0.11)    (8) 

 

where 𝜏 represents atmospheric opacity and 

is considered to be constant (Spreen et al. 
2008). Combining equations (5), (7), and 

(8), it is found that  

 

𝐶𝐴𝑆𝐼 =
𝑥

𝑒 −3𝜏(1.1𝑒 −𝜏−0.11)3 𝑃𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑
3 +

𝑦

𝑒 −2𝜏(1.1𝑒 −𝜏−0.11)2 𝑃𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑
2 +

𝑧

𝑒 −𝜏(1.1𝑒 −𝜏−0.11)
𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 + 𝑑0.                    (9) 

 

In this equation, x, y, and z are some 

constant coefficients. The coefficient d from 

Equation (5) is not used because 𝛼 is used to 

calculate d. The assumption that 𝛼 is a 

smooth function of C used to find Equation 
(5) does not account for any factors which 

influence 𝛼 other than that there is generally 

more water vapor over open water than over 
ice. Since atmospheric opacity is influenced 

by more factors than just ice concentration, 

this could be a source of error. Because x 
and z are both small and y is large and 

negative, Equation (9) shows that if 𝜏 is 

underestimated, C would be overestimated.  

 Figure 3.4.1 shows a case where the 
presence of water vapor caused an 

overestimation of sea ice concentration.  
 

3.5 Radiation 

 

Latent heat could cause melting, 

even if the temperature were below freezing. 
In the case of sea ice, radiative flux could be 

this source of latent heat. Any melting could 

cause liquid water to form on top of the ice 
or create a strongly polarizing ice crust 

which would cause the ASI algorithm to 

underreport 𝐶𝑖𝑐𝑒 . 

 

 
Figure 3.4.1: Images courtesy of Junshen Lu and 

generated using ECMWF ERA Interim data (Dee et 

al., 2011) and AMSR-2 sea ice concentration 

generated using the ASI algorithm. Images on the left 

show total column water in km/m^2, where red is 0.2 

and dark blue is 0, and images on the right show sea 

ice concentration in percent. The pairs of images are 

three hours apart from each other.  
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3.6 Grain Size and Wind Crusts 

  

 As snow is altered by wind, the grain 
sizes at the surface increase. The resulting 

layer of large grains, called a wind crust, can 

significantly affect the horizontal 
polarization of brightness temperature 

(Stogryn 1986). The Snow Grain Size and 
Pollution amount (SGSP) retrieval based on 

microwave data collected by the MODIS 

satellites additionally overestimates the 
grain size by 23 to 77% if a wind crust is 

present (Wiebe 2011). Therefore, a strong 
correlation between grain size reported by 

the SGSP algorithm and polarization 

difference would be expected if a wind crust 
were responsible.  

 
3.7 Salinity 

 

 Many, but not all, of the cases 
investigated have low salinity according to 

model data (Figure 3.7.1), which was used 
because of the dearth of observational data. 

However, salinity of sea ice can also be 

affected by environmental conditions as the 
ice forms. In addition, the Arctic Cap 

Nowcast/Forecast System (ACNFS) model 
used does not seem to have published 

validation of salinity in polar regions. 

Because of the lack of validation and of data 
to input, the model may have a large error 

and the influence of salinity would need to 
be tested using another data set.  

 

4. RESULTS 

 

4.1 Temperature 

 

Ice formation is typically considered to 

begin when temperatures have continuously  

 

 
Figure 3.7.1: Image of ACNFS model output for 

October 2, 2015 from initialization on October 1. 

Salinity in Practical Salinity Units (psu). Obtained 

from 

https://www7320.nrlssc.navy.mil/hycomARC/navo/a

rc_list_arcticsss.html 

 

 
been below -1.8 degrees Celsius, the 

freezing point of most ocean water, for five 

days. Because salt is ejected from the ice as 
it forms (Shokr and Sinah 2015, Cox and 

Weeks 1974), ice is significantly less saline 
than the water it forms from and thus melts 

at approximately 0 degrees Celsius. To test 

the hypothesis that melting due to 
temperature change was responsible for the 

anomalies, the average 2 m air temperature 
for each case was plotted as timeseries 

(Figure 4.1.1). The average temperature for 

each anomaly area only rose above freezing 
after the ice formation start date (marked 

with a blue line) and before late Spring in 2 
of the 10 cases. Only one of these cases has 

an anomaly. Therefore, the melting and 

refreezing of ice or snow cannot be the 
cause of these anomalies. The possibility 

that the rate of freeze causes
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Figure 4.1.1: The average 2m temperatures over Cases 3 (top) and 6 (bottom) beginning 1 August 2015. The 

anomaly area for Case 6 was expanded by 0.5° in each direction due to data resolution. Data comes from the ERA 

Interim reanalysis dataset provided by ECMWF. Red lines denote days when the temperature rose above 0°C after 

ice formation. Blue lines denote the start of ice formation, when the temperature has remained below -1.8°C for five 

consecutive days. Similar plots for all cases can be found in Appendix B.  

 
the anomalies can also be eliminated by 

observing the span of blue and red lines 
during the freeze season.  

The hypothesis that temperature 

affected the emissivities differently was 
tested as a potential cause both visually, by 

plotting polarization difference and sea ice 
temperature in timeseries, and 

mathematically, by calculating the 

correlation coefficient of sea ice temperature 
and polarization difference for each case. 

The plots created clearly show that there is 
not a simple relationship between 

temperature and polarization (Figures 4.1.2 

and 4.1.3). The strength of correlation 
between the two quantities also appears to 

be unrelated to how well the algorithm 
performed. 

 
Figure 4.1.2:  Timeseries of ice surface temperature 

(red) from ERA Interim reanalysis data and 

polarization difference (blue) calculated from the 

AMSR-2 brightness temperature products for January 

through April of Case 2. Note that polarization 

difference is inversely related to the output of the ASI 

algorithm due to the large, negative value of 𝒅𝟐 in 

Equation (5).  
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Figure 4.1.3: Correlation of ice surface temperature 

from ERA Interim reanalysis data and polarization 

difference calculated from the AMSR-2 brightness 

temperature products for January through April of 

Case 7. Correlation coefficients ranged from 0.07 in 

Case 4 to 0.41 in Case 3 with no apparent relation to 

the performance of the algorithm. More details can be 

found in Appendix C.  

 
4.2 Snow Depth 

 

The first snow-related hypothesis 

tested in this study was that the depth of the 

snow was related to the strength of the 
anomaly. If this were true, we would expect 

lower snow depth on the days when the 
anomalies were most intense. Figure 4.3.1 

shows the timeseries generated to test this 

hypothesis. Due to the difficulty retrieving 
 

 
Figure 4.2.1: Timeseries of snow depth from ERA-

Interim Reanalysis data on adjacent land and sea ice 

concentration from the ASI algorithm  

snow depth from ice with current remote 
sensing methods, snow depth data for the 

adjacent land were used. While this creates a 
potentially large source of error, the general 

trend of increasing snow depth throughout 

the winter should hold. The diagram shows 
that snow depth generally increases while 

the anomaly varies, so snow depth is not a 
likely cause of the anomalies. 

 

4.3 Water Vapor and Ozone 

 

One of the correlation plots 
generated to investigate the influence of 

water vapor in the cases under investigation 

is shown in Figure 4.3.1. The lack of 
correlation suggests that interference from 

water vapor is not the cause of the 
anomalies. The same type of investigation 

was made for total column ozone with 

similar results. 
 

4.4 Radiation 

 

To investigate the role of radiative 

flux in the anomalies, the correlation 
coefficients of several radiation products 

from ECMWF ERA-Interim reanalysis 
dataset and polarization difference were 

 

 
Figure 4.3.1: Correlation of sea ice concentration 

from the ASI algorithm with total column water 

vapor from the ERA-Interim Reanalysis dataset for 

January through April 2015 of Case 3.  
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calculated from January through April for all 
cases. These quantities included surface 

latent heat flux, surface net thermal 
radiation, and top net thermal radiation. No 

correlation coefficients with magnitude 

greater than 0.44 (Appendix C) were found, 
and the quantity with the highest correlation 

was top net thermal radiation. This is 
expected due to the relatively high (0.41) 

correlation coefficient of surface 

temperature and sea ice concentration found 
for the same case (Appendix C). Based on 

these results, it is unlikely that radiative flux 
is the cause of the anomalies.  

 

4.5 Snow Grain Size 

 

To test the hypothesis that wind or 
another type of crust caused the observed 

anomalies, the SGSP algorithm was run for 

each case for the month of April in 2015. 
This data was divided into two data sets. 

The first set contains data from the first half 
of April, and the second data set contains 

data from the second half. The average snow 

grain size for each case and data set (using 
the boundaries define in Table 1.1.1) was 

then calculated, resulting in 20 data points.  
 

Figure 2.6.1: Average grain size per case according 

to the SGSP algorithm and the average concentration 

underestimation of the ASI algorithm for the first and 

second halves of April, 2015. A land mask was used 

for ASI concentration but not for snow grain size.  

The snow grain size was not landmasked 
and it was assumed that snow grain size for 

the top layer over ice and the adjacent land 
are similar. Corresponding averages of ASI 

concentration underestimation were 

calculated using a landmask. The correlation 
was then plotted and showed that neither a 

wind crust nor snow grain size was the cause 
of the anomalies (Figure 2.6.1). 

 

4.6 Untestable Causes 

 

The possibilities that surface 
roughness, snow density, atmospheric 

constituents besides water vapor and ozone, 

or salinity had a role in the creation of the 
anomalies could not be tested due to lack of 

data. More data may be available in the 
future to be analyzed in future studies. 

 

5. CONCLUSION 

 

 This study found that the ASI 
algorithm significantly underestimates sea 

ice concentration in several landfast ice 

cases, but performs well in others. Surface 
roughness, snow properties, and salinity 

may be capable of causing the algorithm to 
underreport. Temperature, snow grain size, 

radiative flux, crusting, and some factors of 

atmospheric interference were tested and 
found not to be the cause of the anomalies 

investigated. Due to lack of data availability, 
the effects of surface roughness, salinity, 

snow density profiles, and atmospheric 

constituents besides water and ozone could 
not be tested. The possibility of polarizing 

atmospheric interference was also not 
considered. All correlation coefficients and 

p-values calculated excluding those for 

snow grain size (because the correlation was 
calculated using all cases) can be found in 

Appendix C. 
 It is important to find the cause of 

these anomalies in order to add corrections 
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to the ASI algorithm. As more data becomes 
available, potential factors left unexplored in 

this study should be investigated. However, 
these underestimations do not mean that the 

algorithm is bad, though it should be treated 

with case in areas with fast ice. It is still a 
good source of high-resolution sea ice 

concentration in most instances.  
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APPENDIX A: MODIS visible imagery, ASI algorithm concentration, and Landsat visible 
imagery for one selected day of each case. Note molted coloring is due to clouds. 
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APPENDIX B: The average 2m temperatures for all cases beginning August 1st. The anomaly 
area for Case 6 was expanded by 0.5° in each direction due to data resolution. Data comes from 

the ERA Interim reanalysis dataset provided by the European Centre for Medium-Range 
Weather Forecasting (ECMWF) (Dee et al. 2011). Red lines denote days when the temperature 

rose above 0°C after ice formation. Blue lines denote the start of ice formation, when the 

temperature has remained below -1.8°C for five consecutive days. The possibility that the rate of 
freeze causes the anomalies can be eliminated by observing the span of blue and red lines during 

the freeze season. 

 



Wiedemeier and Ludwig p.16  

 
 
 

 
 

 

 
 

 



Wiedemeier and Ludwig p.17  

APPENDIX C: Correlation Coefficients and P-Values of several quantities with the output of the 
ASI concentration algorithm for each case. 

 
Case 1: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.354 0.000 

Total Column Water -0.193 0.000 

Estimated Snow Depth 0.441 0.000 

Surface Latent Heat Flux -0.108 0.001 

Surface Net Thermal Radiation -0.317 0.000 

Top Net Thermal Radiation -0.115 0.000 

 

Case 2: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature 0.282 0.000 

Total Column Water 0.368 0.000 

Estimated Snow Depth -0.469 0.000 

Surface Latent Heat Flux 0.042 0.006 

Surface Net Thermal Radiation 0.004 0.000 

Top Net Thermal Radiation -0.394 0.000 

 

Case 3: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.455 0.000 

Total Column Water -0.125 0.000 

Estimated Snow Depth -0.740 0.000 

Surface Latent Heat Flux -0.038 0.027 

Surface Net Thermal Radiation 0.245 0.000 

Top Net Thermal Radiation 0.447 0.000 
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Case 4: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.228 0.000 

Total Column Water -0.127 0.000 

Estimated Snow Depth -0.276 0.000 

Surface Latent Heat Flux -0.003 0.001 

Surface Net Thermal Radiation 0.104 0.000 

Top Net Thermal Radiation -0.013 0.000 

 

Case 5 (longitude increased by 0.1° in each direction due to data resolution): 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.417 0.000 

Total Column Water -0.324 0.000 

Estimated Snow Depth 0.214 0.000 

Surface Latent Heat Flux -0.021 0.063 

Surface Net Thermal Radiation 0.047 0.000 

Top Net Thermal Radiation 0.162 0.000 

 
Case 6 (latitude increased by 0.1° in each direction due to data resolution): 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature 0.026 0.000 

Total Column Water -0.010 0.000 

Estimated Snow Depth 0.249 0.000 

Surface Latent Heat Flux 0.006 0.130 

Surface Net Thermal Radiation 0.043 0.000 

Top Net Thermal Radiation -0.062 0.000 

 

Case 7: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.364 0.000 

Total Column Water -0.104 0.000 

Estimated Snow Depth 0.175 0.000 

Surface Latent Heat Flux 0.014 0.185 

Surface Net Thermal Radiation -0.041 0.000 

Top Net Thermal Radiation 0.154 0.000 
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Case 8: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.393 0.000 

Total Column Water -0.313 0.000 

Estimated Snow Depth 0.052 0.000 

Surface Latent Heat Flux -0.034 0.137 

Surface Net Thermal Radiation -0.006 0.000 

Top Net Thermal Radiation 0.240 0.000 

 

Case 9: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.210 0.000 

Total Column Water 0.112 0.000 

Estimated Snow Depth -.0482 0.000 

Surface Latent Heat Flux -0.098 0.017 

Surface Net Thermal Radiation -0.082 0.000 

Top Net Thermal Radiation 0.102 0.000 

 
Case 10: 

Variable Correlation Coefficient P-Value 

Ice Surface Temperature -0.133 0.000 

Total Column Water 0.012 0.000 

Estimated Snow Depth -0.016 0.000 

Surface Latent Heat Flux -0.005 0.006 

Surface Net Thermal Radiation -0.075 0.000 

Top Net Thermal Radiation 0.011 0.000 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
 

 

 
 


